30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

322 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION<br />

55. Let u = √ <br />

x,sothatx = u 2 and dx =2udu.Then<br />

TX.10<br />

<br />

dx<br />

x + x √ x =<br />

<br />

2udu<br />

u 2 + u 2 · u =<br />

2<br />

du = I.<br />

u(1 + u)<br />

2<br />

Now<br />

u(1 + u) = A u + B ⇒ 2=A(1 + u)+Bu. Setu = −1 to get 2=−B,soB = −2. Setu =0to get 2=A.<br />

1+u<br />

2<br />

Thus, I =<br />

u − 2 <br />

du =2ln|u| − 2ln|1+u| + C =2ln √ <br />

x − 2ln 1+ √ <br />

x + C.<br />

1+u<br />

57. Let u = 3√ x + c. Thenx = u 3 − c ⇒<br />

x<br />

3 √ x + cdx= (u 3 − c)u · 3u 2 du =3 (u 6 − cu 3 ) du = 3 7 u7 − 3 4 cu4 + C = 3 7 (x + c)7/3 − 3 4 c(x + c)4/3 + C<br />

59. Let u =sinx,sothatdu =cosxdx.Then<br />

<br />

cos x cos 3 (sin x) dx = cos 3 udu= cos 2 u cos udu= (1 − sin 2 u)cosudu<br />

= (cos u − sin 2 u cos u) du =sinu − 1 3 sin3 u + C = sin(sin x) − 1 3 sin3 (sin x)+C<br />

61. Let y = √ x so that dy = 1<br />

2 √ x dx ⇒ dx =2√ xdy =2ydy.Then<br />

√xe √ x<br />

dx =<br />

<br />

<br />

ye y (2ydy)=<br />

<br />

=2y 2 e y −<br />

4ye y dy<br />

2y 2 e y dy<br />

<br />

<br />

U =4y,<br />

dU =4dy<br />

u =2y 2 ,<br />

du =4ydy<br />

dV = e y dy,<br />

V = e y<br />

<br />

dv = e y dy,<br />

v = e y<br />

=2y 2 e y − 4ye y − 4e y dy =2y 2 e y − 4ye y +4e y + C<br />

<br />

=2(y 2 − 2y +2)e y + C =2 x − 2 √ <br />

x +2 e √x + C<br />

<br />

63. Let u =cos 2 x,sothatdu =2cosx (− sin x) dx. Then<br />

<br />

<br />

sin 2x<br />

1+cos 4 x dx =<br />

<br />

2sinx cos x<br />

1+(cos 2 x) dx = 2<br />

1<br />

1+u 2 (−du) =− tan−1 u + C = − tan −1 (cos 2 x)+C.<br />

<br />

65.<br />

√ √ <br />

dx<br />

1 x +1− x x<br />

√ <br />

√ √ = √ √ · √ √ dx = x +1− x dx<br />

x +1+ x x +1+ x x +1− x<br />

= 2 3<br />

(x +1) 3/2 − x 3/2 <br />

+ C<br />

67. Let x =tanθ,sothatdx =sec 2 θdθ, x = √ 3 ⇒ θ = π 3 ,andx =1 ⇒ θ = π 4 .Then<br />

√ 3<br />

1<br />

√ 1+x<br />

2<br />

π/3<br />

<br />

sec θ<br />

π/3<br />

sec θ (tan 2 θ +1)<br />

dx =<br />

x 2 π/4 tan 2 θ sec2 θdθ=<br />

dθ =<br />

π/4 tan 2 θ<br />

=<br />

=<br />

π/3<br />

π/3<br />

π/4<br />

sec θ tan 2 θ<br />

tan 2 θ<br />

+ sec θ <br />

dθ<br />

tan 2 θ<br />

<br />

π/3<br />

(sec θ +cscθ cot θ) dθ = ln |sec θ +tanθ| − csc θ<br />

π/4<br />

π/4<br />

<br />

ln √ 2+ 3 − √3<br />

2<br />

− ln √ 2+1 √ √ − 2 = 2 − √3<br />

2<br />

+ln 2+ √ 3 − ln 1+ √ 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!