30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

316 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION<br />

53. From the graph, we see that the integral will be negative, and we guess<br />

that the area is about the same as that of a rectangle with width 2 and<br />

height 0.3,soweestimatetheintegraltobe−(2 · 0.3) = −0.6. Now<br />

1<br />

x 2 − 2x − 3 = 1<br />

(x − 3)(x +1) = A<br />

x − 3 + B ⇔<br />

x +1<br />

TX.10<br />

1=(A + B)x + A − 3B,soA = −B and A − 3B =1 ⇔ A = 1 4<br />

and B = − 1 , so the integral becomes<br />

4<br />

2<br />

dx<br />

0 x 2 − 2x − 3 = 1 2<br />

dx<br />

4 0 x − 3 − 1 2<br />

dx<br />

4 0 x +1 = 1 <br />

2<br />

ln |x − 3| − ln |x +1| = 1 <br />

ln<br />

4<br />

0 4 x − 3<br />

2 x +1<br />

0<br />

<br />

= 1 4 ln<br />

1<br />

− ln 3 = − 1 ln 3 ≈−0.55<br />

3 2<br />

<br />

<br />

<br />

dx<br />

55.<br />

x 2 − 2x = dx<br />

(x − 1) 2 − 1 = du<br />

[put u = x − 1]<br />

u 2 − 1<br />

= 1 <br />

2 ln u − 1<br />

u +1 + C [by Equation 6] = 1 <br />

2 ln x − 2<br />

x + C<br />

x<br />

<br />

57. (a) If t =tan ,then x 2 2 =tan−1 t.Thefigure gives<br />

x<br />

<br />

1<br />

x<br />

<br />

cos = √<br />

2 and sin t<br />

= √<br />

1+t<br />

2 2<br />

. 1+t<br />

2<br />

<br />

(b) cos x =cos 2 · x x<br />

<br />

=2cos 2 − 1<br />

2<br />

2<br />

2<br />

1<br />

=2 √ − 1= 2 1 − t2<br />

− 1= 1+t<br />

2 1+t2 1+t 2<br />

(c) x 2<br />

=arctant ⇒ x = 2 arctan t ⇒ dx =<br />

2 1+t dt 2<br />

59. Let t =tan(x/2). Then, using the expressions in Exercise 57, we have<br />

<br />

<br />

1<br />

3sinx − 4cosx dx = 1<br />

2t 1 − t<br />

2<br />

2 dt <br />

<br />

1+t =2 dt<br />

3 − 4<br />

2 3(2t) − 4(1 − t 2 ) = dt<br />

2t 2 +3t − 2<br />

1+t 2 1+t 2<br />

<br />

<br />

dt<br />

2<br />

=<br />

(2t − 1)(t +2) = 1<br />

5 2t − 1 − 1 <br />

1<br />

dt [using partial fractions]<br />

5 t +2<br />

<br />

<br />

= 1 ln |2t − 1| − ln |t +2| + C = 1 <br />

5<br />

5 ln 2t − 1<br />

t +2 + C = 1 <br />

5 ln 2tan(x/2) − 1<br />

tan (x/2) + 2 + C<br />

61. Let t =tan(x/2). Then, by Exercise 57,<br />

π/2<br />

<br />

sin 2x<br />

π/2<br />

<br />

2t<br />

0 2+cosx dx = 2sinx cos x<br />

1 2 ·<br />

0 2+cosx dx = 1+t · 1 − t2<br />

8t(1 − t 2 )<br />

2 1+t 2 2<br />

1<br />

0<br />

2+ 1 − t2 1+t dt = (1 + t 2 ) 2<br />

2 0 2(1 + t 2 )+(1− t 2 ) dt<br />

1+t 2<br />

1<br />

1 − t 2<br />

= 8t ·<br />

(t 2 +3)(t 2 +1) dt = I 2<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!