30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

43. Let u = 3√ x 2 +1.Thenx 2 = u 3 − 1, 2xdx=3u 2 du ⇒<br />

<br />

x 3 <br />

dx (u 3<br />

3√<br />

x2 +1 = − 1) 3 2 u2 du<br />

= 3 <br />

(u 4 − u) du<br />

u 2<br />

SECTIONTX.10<br />

7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 315<br />

= 3 10 u5 − 3 4 u2 + C = 3 10 (x2 +1) 5/3 − 3 4 (x2 +1) 2/3 + C<br />

45. If we were to substitute u = √ x, then the square root would disappear but a cube root would remain. On the other hand, the<br />

substitution u = 3√ x would eliminate the cube root but leave a square root. We can eliminate both roots by means of the<br />

substitution u = 6√ x. (Note that 6 is the least common multiple of 2 and 3.)<br />

Let u = 6√ x.Thenx = u 6 ,sodx =6u 5 du and √ 3√<br />

x = u 3 , x = u 2 .Thus,<br />

<br />

<br />

dx 6u 5 <br />

√ √ 3<br />

x − x = du<br />

u 3 − u =6 u 5<br />

<br />

2 u 2 (u − 1) du =6 u 3<br />

u − 1 du<br />

<br />

=6 u 2 + u +1+ 1 <br />

du [bylongdivision]<br />

u − 1<br />

=6 1<br />

3 u3 + 1 2 u2 + u +ln|u − 1| + C =2 √ x +3 3√ x +6 6√ x +6ln 6√ x − 1 + C<br />

47. Let u = e x .Thenx =lnu, dx = du u<br />

⇒<br />

<br />

e 2x <br />

dx<br />

e 2x +3e x +2 =<br />

u 2 <br />

(du/u)<br />

u 2 +3u +2 =<br />

<br />

udu<br />

−1<br />

(u +1)(u +2) = u +1 + 2 <br />

du<br />

u +2<br />

<br />

49. Let u =tant, sothatdu =sec 2 tdt.Then<br />

Now<br />

1<br />

(u +1)(u +2) = A<br />

u +1 + B<br />

u +2<br />

=2ln|u +2| − ln |u +1| + C =ln (ex +2) 2<br />

e x +1<br />

+ C<br />

sec 2 <br />

t<br />

tan 2 t +3tant +2 dt =<br />

⇒ 1=A(u +2)+B(u +1).<br />

<br />

1<br />

u 2 +3u +2 du =<br />

1<br />

(u +1)(u +2) du.<br />

Setting u = −2 gives 1=−B, soB = −1. Setting u = −1 gives 1=A.<br />

<br />

<br />

1<br />

1<br />

Thus,<br />

(u +1)(u +2) du = u +1 − 1 <br />

du =ln|u +1| −ln |u +2|+C =ln|tan t +1|−ln |tan t +2|+C.<br />

u +2<br />

51. Let u =ln(x 2 − x +2), dv = dx. Thendu = 2x − 1 dx, v = x, and (by integration by parts)<br />

x 2 − x +2<br />

<br />

<br />

ln(x 2 − x +2)dx = x ln(x 2 2x 2 <br />

− x<br />

− x +2)−<br />

x 2 − x +2 dx = x ln(x2 − x +2)− 2+ x − 4 <br />

dx<br />

x 2 − x +2<br />

1<br />

= x ln(x 2 (2x − 1)<br />

2<br />

− x +2)− 2x −<br />

x 2 − x +2 dx + 7 <br />

dx<br />

2 (x − 1 2 )2 + 7 4<br />

= x ln(x 2 − x +2)− 2x − 1 2 ln(x2 − x +2)+ 7 <br />

√<br />

⎡<br />

7<br />

du 2 ⎣<br />

7<br />

2<br />

4 (u2 +1)<br />

=(x − 1 2 )ln(x2 − x +2)− 2x + √ 7tan −1 u + C<br />

=(x − 1 2 )ln(x2 − x +2)− 2x + √ 7tan −1 2x − 1<br />

√ + C<br />

7<br />

where x − 1 2 = √ 7<br />

2 u,<br />

dx = √ 7<br />

2 du,<br />

(x − 1 2 )2 + 7 4 = 7 4 (u2 +1)<br />

⎤<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!