30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 7.3 TRIGONOMETRIC SUBSTITUTION ¤ 309<br />

41. Let the equation of the large circle be x 2 + y 2 = R 2 . Then the equation of<br />

the small circle is x 2 +(y − b) 2 = r 2 ,whereb = √ R 2 − r 2 is the distance<br />

between the centers of the circles. The desired area is<br />

A = r<br />

√<br />

−r b + r2 − x 2 − √ R 2 − x 2 dx<br />

=2 r √<br />

0 b + r2 − x 2 − √ R 2 − x 2 dx<br />

=2 r<br />

bdx+2 r<br />

0 0<br />

√<br />

r2 − x 2 dx − 2 r<br />

0<br />

√<br />

R2 − x 2 dx<br />

The firstintegralisjust2br =2r √ R 2 − r 2 . The second integral represents the area of a quarter-circle of radius r,soitsvalue<br />

is 1 4 πr2 . To evaluate the other integral, note that<br />

Thus, the desired area is<br />

√<br />

a2 − x 2 dx = a 2 cos 2 θdθ [x = a sin θ, dx = a cos θdθ] = 1<br />

2 a2 (1 + cos 2θ) dθ<br />

= 1 2 a2 θ + 1 2 sin 2θ + C = 1 2 a2 (θ +sinθ cos θ)+C<br />

<br />

= a2 x<br />

<br />

2 arcsin + a2 x<br />

√ a 2 − x 2<br />

<br />

+ C = a2 x<br />

<br />

a 2 a a<br />

2 arcsin + x √<br />

a2 − x<br />

a 2 2 + C<br />

A =2r √ R 2 − r 2 +2 1<br />

4 πr2 − R 2 arcsin(x/R)+x √ R 2 − x 2 r<br />

0<br />

=2r √ R 2 − r 2 + 1 2 πr2 − R 2 arcsin(r/R)+r √ R 2 − r 2 = r √ R 2 − r 2 + π 2 r2 − R 2 arcsin(r/R)<br />

43. We use cylindrical shells and assume that R>r. x 2 = r 2 − (y − R) 2 ⇒ x = ± r 2 − (y − R) 2 ,<br />

so g(y) =2 r 2 − (y − R) 2 and<br />

V = R+r<br />

2πy · 2 r<br />

R−r 2 − (y − R) 2 dy = r<br />

4π(u + R)√ r<br />

−r 2 − u 2 du [where u = y − R]<br />

=4π r<br />

u √ r<br />

−r 2 − u 2 du +4πR <br />

<br />

r<br />

√<br />

r2 − u<br />

−r 2 where u = r sin θ , du = r cos θdθ<br />

du<br />

in the second integral<br />

<br />

r<br />

=4π − 1 3 (r2 − u 2 ) 3/2 +4πR π/2<br />

−π/2 r2 cos 2 θdθ= − 4π (0 − 0) + 3 4πRr2 π/2<br />

−π/2 cos2 θdθ<br />

−r<br />

=2πRr 2 π/2<br />

−π/2 (1 + cos 2θ) dθ =2πRr2 θ + 1 2 sin 2θ π/2<br />

−π/2 =2π2 Rr 2<br />

Another method: Use washers instead of shells, so V =8πR r<br />

<br />

r2 − y<br />

0 2 dy as in Exercise 6.2.63(a), but evaluate the<br />

integral using y = r sin θ.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!