30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 7.1 INTEGRATION BY PARTS ¤ 299<br />

51. By repeated applications of the reduction formula in Exercise 47,<br />

<br />

(ln x) 3 dx = x (ln x) 3 − 3 (ln x) 2 dx = x(ln x) 3 − 3 x(ln x) 2 − 2 (ln x) 1 dx <br />

= x (ln x) 3 − 3x(ln x) 2 +6 x(ln x) 1 − 1 (ln x) 0 dx <br />

= x (ln x) 3 − 3x(ln x) 2 +6x ln x − 6 1 dx = x (ln x) 3 − 3x(ln x) 2 +6x ln x − 6x + C<br />

53. Area = 5<br />

0 xe−0.4x dx. Letu = x, dv = e −0.4x dx ⇒<br />

du = dx, v = −2.5e −0.4x .Then<br />

area = −2.5xe −0.4x 5<br />

0 +2.5 5<br />

0 e−0.4x dx<br />

= −12.5e −2 +0+2.5 −2.5e −0.4x 5<br />

0<br />

= −12.5e −2 − 6.25(e −2 − 1) = 6.25 − 18.75e −2 or 25 − 75 4 4 e−2<br />

55. The curves y = x sin x and y =(x − 2) 2 intersect at a ≈ 1.04748 and<br />

b ≈ 2.87307,so<br />

area = b<br />

a [x sin x − (x − 2)2 ] dx<br />

= −x cos x +sinx − 1 (x − 2)3 b<br />

3 a<br />

≈ 2.81358 − 0.63075 = 2.18283<br />

[by Example 1]<br />

57. V = 1<br />

2πx cos(πx/2) dx. Letu = x, dv =cos(πx/2) dx ⇒ du = dx, v = 2 sin(πx/2).<br />

0 π<br />

2<br />

πx<br />

1<br />

V =2π<br />

π x sin − 2π · 2 1 πx<br />

<br />

2<br />

sin dx =2π<br />

2<br />

π 2<br />

π − 0 − 4 − 2 πx<br />

1<br />

π cos =4+ 8 2<br />

π (0 − 1) = 4 − 8 π .<br />

0<br />

0<br />

59. Volume = 0<br />

−1 2π(1 − x)e−x dx.Letu =1− x, dv = e −x dx ⇒ du = − dx, v = −e −x .<br />

V =2π (1 − x)(−e −x ) 0<br />

− 2π 0<br />

−1 −1 e−x dx =2π (x − 1)(e −x )+e −x 0<br />

=2π xe −x 0<br />

=2π(0 + e) =2πe<br />

−1 −1<br />

61. Theaveragevalueoff(x) =x 2 ln x on the interval [1, 3] is f ave = 1<br />

3 − 1<br />

Let u =lnx, dv = x 2 dx ⇒ du =(1/x) dx, v = 1 3 x3 .<br />

So I = 1<br />

3 x3 ln x 3<br />

− 3<br />

1 1<br />

Thus, f ave = 1 2 I = 1 2<br />

<br />

9ln3−<br />

26<br />

9<br />

3<br />

1<br />

3 x2 dx =(9ln3− 0) − 1<br />

x3 3<br />

=9ln3− <br />

9<br />

3 − 1 1 9<br />

<br />

=<br />

9<br />

ln 3 − 13 .<br />

2 9<br />

1<br />

0<br />

x 2 ln xdx= 1 2 I.<br />

<br />

=9ln3−<br />

26<br />

9 .<br />

63. Since v(t) > 0 for all t, the desired distance is s(t) = t<br />

t<br />

0 0 w2 e −w dw.<br />

First let u = w 2 , dv = e −w dw ⇒ du =2wdw, v = −e −w .Thens(t) = −w 2 e −w t<br />

t<br />

0 0 we−w dw.<br />

Next let U = w, dV = e −w dw ⇒ dU = dw, V = −e −w .Then<br />

−we<br />

s(t) =−t 2 e −t −w<br />

+2<br />

t<br />

<br />

<br />

t<br />

0 0 e−w dw = −t 2 e −t +2 −te −t +0+ −e −w <br />

t<br />

0<br />

= −t 2 e −t +2(−te −t − e −t +1)=−t 2 e −t − 2te −t − 2e −t +2=2− e −t (t 2 +2t +2)meters<br />

65. For I = 4<br />

xf 00 (x) dx, letu = x, dv = f 00 (x) dx ⇒ du = dx, v = f 0 (x). Then<br />

1<br />

I = xf 0 (x) 4<br />

− 4<br />

f 0 (x) dx =4f 0 (4) − 1 · f 0 (1) − [f(4) − f(1)] = 4 · 3 − 1 · 5 − (7 − 2) = 12 − 5 − 5=2.<br />

1 1<br />

We used the fact that f 00 is continuous to guarantee that I exists.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!