30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

298 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION<br />

TX.10<br />

41. Let u = 1 2 x2 , dv =2x √ 1+x 2 dx ⇒ du = xdx, v = 2 3 (1 + x2 ) 3/2 .<br />

Then<br />

√ <br />

x<br />

3<br />

1+x 2 dx = 1 2 x2 2<br />

(1 + <br />

3 x2 ) 3/2 − 2 3 x(1 + x 2 ) 3/2 dx<br />

= 1 3 x2 (1 + x 2 ) 3/2 − 2 3 · 2<br />

5 · 1<br />

2 (1 + x2 ) 5/2 + C<br />

= 1 3 x2 (1 + x 2 ) 3/2 − 2<br />

15 (1 + x2 ) 5/2 + C<br />

Another method: Use substitution with u =1+x 2 to get 1 5 (1 + x2 ) 5/2 − 1 3 (1 + x2 ) 3/2 + C.<br />

<br />

43. (a) Take n =2in Example 6 to get<br />

0<br />

sin 2 xdx= − 1 2 cos x sin x + 1 2<br />

<br />

1 dx = x 2<br />

−<br />

sin 2x<br />

4<br />

(b) sin 4 xdx= − 1 cos x <br />

4 sin3 x + 3 4 sin 2 xdx= − 1 cos x 4 sin3 x + 3 x − 3 sin 2x + C.<br />

8 16<br />

<br />

45. (a) From Example 6, sin n xdx= − 1 n cos x sinn−1 x + n − 1 <br />

sin n−2 xdx. Using (6),<br />

n<br />

π/2<br />

<br />

sin n xdx= − cos x π/2<br />

sinn−1 x<br />

+ n − 1 π/2<br />

sin n−2 xdx<br />

n<br />

n<br />

=(0− 0) + n − 1<br />

n<br />

0<br />

π/2<br />

0<br />

sin n−2 xdx= n − 1<br />

n<br />

(b) Using n =3in part (a), we have π/2<br />

<br />

sin 3 xdx= 2 π/2<br />

sin xdx= − 2 cos x π/2<br />

0 3 0 3<br />

Using n =5in part (a), we have π/2<br />

0<br />

sin 5 xdx= 4 5<br />

π/2<br />

0<br />

sin 3 xdx= 4 5 · 2<br />

3 = 8 15 .<br />

0<br />

π/2<br />

0<br />

0<br />

= 2 3 .<br />

+ C.<br />

sin n−2 xdx<br />

(c) The formula holds for n =1(that is, 2n +1=3) by (b). Assume it holds for some k ≥ 1. Then<br />

π/2<br />

0<br />

sin 2k+1 xdx=<br />

π/2<br />

0<br />

2 · 4 · 6 ·····(2k)<br />

3 · 5 · 7 ·····(2k +1) .ByExample6,<br />

sin 2k+3 xdx=<br />

=<br />

2k +2<br />

2k +3<br />

π/2<br />

0<br />

sin 2k+1 xdx=<br />

2 · 4 · 6 ·····(2k)[2 (k +1)]<br />

3 · 5 · 7 ·····(2k +1)[2(k +1)+1] ,<br />

so the formula holds for n = k +1. By induction, the formula holds for all n ≥ 1.<br />

47. Let u =(lnx) n , dv = dx ⇒ du = n(ln x) n−1 (dx/x), v = x. By Equation 2,<br />

<br />

(ln x) n dx = x(ln x) n − nx(ln x) n−1 (dx/x) =x(ln x) n − n (ln x) n−1 dx.<br />

2k +2<br />

2k +3 · 2 · 4 · 6 ·····(2k)<br />

3 · 5 · 7 ·····(2k +1)<br />

49.<br />

<br />

tan n xdx= tan n−2 x tan 2 xdx= tan n−2 x (sec 2 x − 1) dx = tan n−2 x sec 2 xdx− tan n−2 xdx<br />

= I − tan n−2 xdx.<br />

Let u =tan n−2 x, dv =sec 2 xdx ⇒ du =(n − 2) tan n−3 x sec 2 xdx, v =tanx. Then, by Equation 2,<br />

I =tan n−1 x − (n − 2) tan n−2 x sec 2 xdx<br />

1I =tan n−1 x − (n − 2)I<br />

(n − 1)I =tan n−1 x<br />

I = tann−1 x<br />

n − 1<br />

Returning to the original integral, tan n xdx= tann−1 x<br />

n − 1<br />

− tan n−2 xdx.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!