30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 7.1 INTEGRATION BY PARTS ¤ 297<br />

29. Let u =ln(sinx), dv =cosxdx ⇒ du = cos x dx, v =sinx. Then<br />

sin x<br />

I = cos x ln(sin x) dx =sinx ln(sin x) − cos xdx=sinx ln(sin x) − sin x + C.<br />

Another method: Substitute t =sinx,sodt =cosxdx.ThenI = ln tdt = t ln t − t + C (see Example 2) and so<br />

I =sinx (ln sin x − 1) + C.<br />

31. Let u =(lnx) 2 , dv = x 4 dx ⇒ du =2 ln x x5<br />

dx, v =<br />

x 5 .By(6),<br />

2<br />

x<br />

x 4 (ln x) 2 5<br />

2 2<br />

dx =<br />

1<br />

5 (ln x 4<br />

2<br />

x)2 32<br />

− 2 ln xdx=<br />

1 1 5 (ln x 4<br />

5 2)2 − 0 − 2 ln xdx.<br />

1 5<br />

dx, V =<br />

x5<br />

25 .<br />

Let U =lnx, dV = x4<br />

5 dx ⇒ dU = 1 x<br />

2<br />

<br />

x 4<br />

x<br />

5 2 2<br />

<br />

Then<br />

1 5 ln xdx= 25 ln x x 4<br />

32<br />

x<br />

5<br />

− dx =<br />

1 1 25 ln 2 − 0 − 25<br />

So 2<br />

1 x4 (ln x) 2 dx = 32 (ln 5 2)2 − 2 32<br />

31<br />

25<br />

ln 2 −<br />

125<br />

125<br />

2<br />

1<br />

<br />

=<br />

32<br />

(ln 5 2)2 − 64<br />

62<br />

25<br />

ln 2 + . 125<br />

= 32<br />

25 ln 2 − 32<br />

125 − 1<br />

125<br />

<br />

.<br />

33. Let y = √ x,sothatdy = 1 2 x−1/2 dx = 1<br />

2 √ x dx = 1<br />

2y dx. Thus, cos √ xdx= cos y (2ydy)=2 y cos ydy.Now<br />

use parts with u = y, dv =cosydy, du = dy, v =siny to get y cos ydy= y sin y − sin ydy= y sin y +cosy + C 1 ,<br />

so cos √ xdx=2y sin y +2cosy + C =2 √ x sin √ x +2cos √ x + C.<br />

√<br />

35. Let x = θ 2 π<br />

,sothatdx =2θdθ.Thus, θ 3 cos θ 2 √ π<br />

dθ = θ 2 cos θ 2 π<br />

· 1 (2θdθ)= 1 x cos xdx.Nowuse<br />

√ √ 2 2<br />

π/2 π/2 π/2<br />

parts with u = x, dv =cosxdx, du = dx, v =sinx to get<br />

π<br />

<br />

1<br />

x π<br />

<br />

x cos xdx= 1 π<br />

2<br />

2 sin x − sin xdx<br />

π/2<br />

π/2<br />

π/2<br />

= 1 2<br />

= 1 2 (π sin π +cosπ) − 1 2<br />

π<br />

2 sin π 2 +cos π 2<br />

x sin x +cosx<br />

π<br />

π/2<br />

<br />

=<br />

1<br />

2 (π · 0 − 1) − 1 2<br />

π<br />

2 · 1+0 = − 1 2 − π 4<br />

37. Let y =1+x, so that dy = dx. Thus, x ln(1 + x) dx = (y − 1) ln ydy.Nowusepartswithu =lny, dv =(y − 1) dy,<br />

du = 1 dy, v = 1 y 2 y2 − y to get<br />

(y − 1) ln ydy= 1<br />

2 y2 − y ln y − 1<br />

y − 1 dy = 1 y(y − 2) ln y − 1 2 2 4 y2 + y + C<br />

= 1 2 (1 + x)(x − 1) ln(1 + x) − 1 4 (1 + x)2 +1+x + C,<br />

which can be written as 1 2 (x2 − 1) ln(1 + x) − 1 4 x2 + 1 2 x + 3 4 + C.<br />

In Exercises 39 – 42, let f(x) denote the integrand and F (x) its antiderivative (with C =0).<br />

39. Let u =2x +3, dv = e x dx ⇒ du =2dx, v = e x .Then<br />

(2x +3)e x dx =(2x +3)e x − 2 e x dx =(2x +3)e x − 2e x + C<br />

=(2x +1)e x + C<br />

We see from the graph that this is reasonable, since F has a minimum where<br />

f changes from negative to positive.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!