30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

7 TECHNIQUES OF INTEGRATION<br />

7.1 Integration by Parts<br />

1. Let u =lnx, dv = x 2 dx ⇒ du = 1 dx, v = 1 x 3 x3 .ThenbyEquation2,<br />

<br />

x 2 ln xdx=(lnx) 1<br />

x3 − 1<br />

x3 <br />

1<br />

3 3 x dx =<br />

1<br />

3 x3 ln x − 1 3 x 2 dx = 1 3 x3 ln x − 1 1 x3 + C<br />

3 3<br />

= 1 3 x3 ln x − 1 9 x3 + C or 1 x3 <br />

ln x − 1 3 3 + C<br />

Note: A mnemonic device which is helpful for selecting u when using integration by parts is the LIATE principle of precedence for u:<br />

Logarithmic<br />

Inverse trigonometric<br />

Algebraic<br />

Trigonometric<br />

Exponential<br />

If the integrand has several factors, then we try to choose among them a u which appears as high as possible on the list. For example, in xe 2x dx<br />

the integrand is xe 2x , which is the product of an algebraic function (x) and an exponential function (e 2x ). Since Algebraic appears before Exponential,<br />

we choose u = x. Sometimes the integration turns out to be similar regardless of the selection of u and dv, but it is advisable to refer to LIATE when in<br />

doubt.<br />

3. Let u = x, dv =cos5xdx ⇒ du = dx, v = 1 5<br />

sin 5x. ThenbyEquation2,<br />

<br />

x cos 5xdx=<br />

1<br />

x sin 5x − 1<br />

sin 5xdx= 1 1<br />

5 5 5<br />

x sin 5x +<br />

25<br />

cos 5x + C.<br />

5. Let u = r, dv = e r/2 dr ⇒ du = dr, v =2e r/2 .Then re r/2 dr =2re r/2 − 2e r/2 dr =2re r/2 − 4e r/2 + C.<br />

7. Let u = x 2 , dv =sinπxdx ⇒ du =2xdxand v = − 1 π<br />

cos πx. Then<br />

I = <br />

x 2 sin πxdx = − 1 π x2 cos πx + 2 π x cos πxdx (). Next let U = x, dV =cosπx dx ⇒ dU = dx,<br />

V = 1 sin πx, so π<br />

x cos πxdx = 1 x sin πx − 1<br />

π π sin πx dx =<br />

1<br />

1<br />

π<br />

x sin πx + cos πx + C<br />

π 1.<br />

2<br />

Substituting for x cos πx dx in (), we get<br />

<br />

I = − 1 π x2 cos πx + 2 1<br />

<br />

1<br />

x sin πx + cos πx + C<br />

π π π 2 1 = −<br />

1<br />

π x2 cos πx + 2 x sin πx + 2 cos πx + C,whereC = 2 C π 2 π 3 π 1.<br />

9. Let u =ln(2x +1), dv = dx ⇒ du = 2 dx, v = x. Then<br />

2x +1<br />

<br />

<br />

<br />

2x<br />

(2x +1)− 1<br />

ln(2x +1)dx = x ln(2x +1)−<br />

2x +1 dx = x ln(2x +1)− dx<br />

2x +1<br />

<br />

= x ln(2x +1)− 1 − 1 <br />

dx = x ln(2x +1)− x + 1 ln(2x +1)+C<br />

2<br />

2x +1<br />

11. Let u =arctan4t, dv = dt ⇒ du =<br />

<br />

<br />

arctan 4tdt= t arctan 4t −<br />

= 1 2<br />

(2x +1)ln(2x +1)− x + C<br />

4<br />

1+(4t) dt = 4<br />

dt, v = t. Then<br />

2 1+16t2 4t<br />

1+16t 2 dt = t arctan 4t − 1 8<br />

<br />

32t<br />

1+16t 2 dt = t arctan 4t − 1 8 ln(1 + 16t2 )+C.<br />

295

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!