30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

284 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION<br />

TX.10<br />

23. Let x measure depth (in feet) below the spout at the top of the tank. A horizontal<br />

disk-shaped “slice” of water ∆x ft thick and lying at coordinate x has radius<br />

3<br />

(16 − x) ft () 8 andvolumeπr2 ∆x = π · 9 (16 − 64 x)2 ∆x ft 3 .Itweighs<br />

about (62.5) 9π<br />

64 (16 − x)2 ∆x lb and must be lifted x ft by the pump, so the<br />

work needed to pump it out is about (62.5)x 9π<br />

64 (16 − x)2 ∆x ft-lb. The total<br />

work required is<br />

W ≈ 8<br />

9π<br />

(62.5)x (16 − 0 64 x)2 dx =(62.5) 9π<br />

64<br />

=(62.5) 9π<br />

64<br />

=(62.5) 9π<br />

64<br />

8<br />

0 x(256 − 32x + x2 ) dx<br />

8 (256x − <br />

0 32x2 + x 3 ) dx =(62.5) 9π<br />

64 128x 2 − 32<br />

3 x3 + 1 x4 8<br />

4 0<br />

11, 264<br />

3<br />

=33,000π ≈ 1.04 × 10 5 ft-lb<br />

d<br />

() From similar triangles,<br />

8 − x = 3 . 8<br />

So r =3+d =3+ 3 8 (8 − x)<br />

= 3(8)<br />

8<br />

= 3 8 (16 − x)<br />

+ 3 (8 − x)<br />

8<br />

25. If only 4.7 × 10 5 J of work is done, then only the water above a certain level (call<br />

it h) will be pumped out. So we use the same formula as in Exercise 21, except that<br />

the work is fixed, and we are trying to find the lower limit of integration:<br />

4.7 × 10 5 ≈ 3<br />

h (9.8 × 103 )(5 − x)8xdx= 9.8 × 10 3 20x 2 − 8 3 x3 3<br />

h<br />

⇔<br />

4.7<br />

× 9.8 102 ≈ 48 = 20 · 3 2 − 8 · 33 − 20h 2 − 8 h3 ⇔<br />

3 3<br />

2h 3 − 15h 2 +45=0.Tofind the solution of this equation, we plot 2h 3 − 15h 2 +45between h =0and h =3.<br />

We see that the equation is satisfied for h ≈ 2.0.Sothedepthofwaterremaininginthetankisabout2.0 m.<br />

27. V = πr 2 x,soV is a function of x and P canalsoberegardedasafunctionofx. IfV 1 = πr 2 x 1 and V 2 = πr 2 x 2,then<br />

W =<br />

=<br />

29. W =<br />

x2<br />

x 1<br />

F (x) dx =<br />

V2<br />

x2<br />

x 1<br />

πr 2 P (V (x)) dx =<br />

V 1<br />

P (V ) dV by the Substitution Rule.<br />

b<br />

a<br />

F (r) dr =<br />

b<br />

a<br />

G m 1m 2<br />

r 2<br />

x2<br />

x 1<br />

P (V (x)) dV (x) [Let V (x) =πr 2 x,sodV (x) =πr 2 dx.]<br />

b −1<br />

1<br />

dr = Gm 1 m 2 = Gm 1 m 2<br />

r<br />

a<br />

a − 1 <br />

b<br />

6.5 Average Value of a Function<br />

<br />

1. f ave = 1 b<br />

<br />

1 4<br />

f(x) dx = (4x − <br />

b − a a 4 − 0 0 x2 ) dx = 1 4 2x 2 − 1 x3 4<br />

= 1<br />

3 0 4<br />

32 −<br />

64<br />

3<br />

− 0<br />

=<br />

1<br />

4<br />

32<br />

<br />

3 =<br />

8<br />

3<br />

<br />

3. g ave = 1 b<br />

<br />

1 8<br />

g(x) dx =<br />

b − a a 8 − 1 1<br />

<br />

3√ 8<br />

xdx=<br />

1 3<br />

7 4 x4/3 = 3 45<br />

(16 − 1) =<br />

28 28<br />

1<br />

<br />

5. f ave = 1 5<br />

<br />

5 − 0 0 te−t2 dt = 1 −25<br />

e u − 1 du u = −t 2 , du = −2tdt, tdt= − 1 du<br />

5 0 2 2<br />

<br />

= − 1 10 e<br />

u −25<br />

= − 1 10 (e−25 − 1) = 1 (1 − 10 e−25 )<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!