30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

262 ¤ PROBLEMS PLUS<br />

TX.10<br />

(b) We can write b<br />

[x] dx = b<br />

[x] dx − a<br />

[x] dx.<br />

a 0 0<br />

Now b<br />

[x] dx = [b ]<br />

[x] dx + b<br />

[x] dx. Thefirstoftheseintegralsisequalto 1 ([b] − 1) [b],<br />

0 0 [b ] 2<br />

by part (a), and since [x]] = [b] on [[b] ,b], the second integral is just [b] (b − [b]).So<br />

b [x] dx = 1 ([b]] − 1) [b] + [[b] (b − [b]) = 1 [b] (2b − [b] − 1) and similarly a<br />

[[x] dx = 1<br />

0 2 2 0 2<br />

[a] (2a − [a] − 1).<br />

Therefore, b<br />

[x] dx = 1 [b] (2b − [b] − 1) − 1<br />

a 2 2<br />

[a] (2a − [a] − 1).<br />

13. Let Q(x) =<br />

x<br />

0<br />

<br />

P (t) dt = at + b 2 t2 + c 3 t3 + d x<br />

4 t4 = ax + b<br />

0<br />

2 x2 + c 3 x3 + d 4 x4 .ThenQ(0) = 0,andQ(1) = 0 by the<br />

given condition, a + b 2 + c 3 + d 4 =0.Also,Q0 (x) =P (x) =a + bx + cx 2 + dx 3 by FTC1. By Rolle’s Theorem, applied to<br />

Q on [0, 1], there is a number r in (0, 1) such that Q 0 (r) =0, that is, such that P (r) =0. Thus, the equation P (x) =0has a<br />

root between 0 and 1.<br />

More generally, if P (x) =a 0 + a 1 x + a 2 x 2 + ···+ a n x n and if a 0 + a1<br />

2 + a2 an<br />

+ ···+ =0, then the equation<br />

3 n +1<br />

P(x) =0has a root between 0 and 1. Theproofisthesameasbefore:<br />

Let Q(x) =<br />

x<br />

0<br />

P (t) dt = a 0x + a 1<br />

2 x2 + a 2<br />

3 x3 + ···+ a n<br />

n +1 xn .ThenQ(0) = Q(1) = 0 and Q 0 (x) =P (x). By<br />

Rolle’s Theorem applied to Q on [0, 1], there is a number r in (0, 1) such that Q 0 (r) =0, that is, such that P (r) =0.<br />

15. Note that<br />

d<br />

dx<br />

x<br />

u<br />

0<br />

0<br />

<br />

f(t) dt du =<br />

d<br />

dx<br />

x<br />

x<br />

<br />

f(u)(x − u) du<br />

0<br />

0<br />

f(t) dt by FTC1, while<br />

= d <br />

x<br />

dx<br />

x<br />

0<br />

<br />

f(u) du − d<br />

dx<br />

x<br />

0<br />

<br />

f(u)udu<br />

= x<br />

f(u) du + xf(x) − f(x)x = x<br />

f(u) du<br />

0 0<br />

Hence, x<br />

f(u)(x − u) du = x<br />

u f(t) dt du + C. Setting x =0gives C =0.<br />

0 0 0<br />

<br />

17. lim<br />

n→∞<br />

1<br />

√ n<br />

√ n +1<br />

+<br />

1<br />

√ n<br />

√ n +2<br />

+ ···+<br />

= lim<br />

n→∞<br />

= lim<br />

n→∞<br />

1<br />

= lim<br />

n→∞ n<br />

=<br />

1<br />

0<br />

<br />

1<br />

√ √ n n + n<br />

<br />

<br />

1 n n<br />

n<br />

n n +1 + n +2 + ···+ n + n<br />

<br />

<br />

1 1<br />

1<br />

1<br />

+ + ···+ √<br />

n 1+1/n 1+2/n 1+1<br />

n<br />

i=1<br />

<br />

<br />

i 1<br />

f<br />

where f(x) = √<br />

n<br />

1+x<br />

1<br />

√ 1+x<br />

dx = 2 √ 1+x 1<br />

0 =2 √<br />

2 − 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!