30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

254 ¤ CHAPTER 5 INTEGRALS<br />

TX.10<br />

75. First Figure Let u = √ x,sox = u 2 and dx =2udu.Whenx =0, u =0;whenx =1, u =1. Thus,<br />

A 1 = 1<br />

0 e√x dx = 1<br />

0 eu (2udu)=2 1<br />

0 ueu du.<br />

Second Figure A 2 = 1<br />

0 2xex dx =2 1<br />

0 ueu du.<br />

Third Figure<br />

Let u =sinx,sodu =cosxdx.Whenx =0, u =0;whenx = π 2 , u =1.Thus,<br />

A 3 = π/2<br />

0<br />

e sin x sin 2xdx= π/2<br />

0<br />

e sin x (2 sin x cos x) dx = 1<br />

0 eu (2udu)=2 1<br />

0 ueu du.<br />

Since A 1 = A 2 = A 3 , all three areas are equal.<br />

77. The rate is measured in liters per minute. Integrating from t =0minutes to t =60minutes will give us the total amount of oil<br />

that leaks out (in liters) during the first hour.<br />

60<br />

r(t) dt = 60<br />

0 0 100e−0.01t dt [u = −0.01t, du = −0.01dt]<br />

= 100 −0.6<br />

e u (−100 du) =−10,000 e u −0.6<br />

= −10,000(e −0.6 − 1) ≈ 4511.9 ≈ 4512 liters<br />

0 0<br />

79. The volume of inhaled air in the lungs at time t is<br />

V (t)= t<br />

f(u) du = t 1<br />

sin 2π<br />

u du = 2πt/5 1<br />

sin v 5<br />

0 0 2 5 0 2<br />

= 5<br />

4π<br />

<br />

− cos v<br />

2πt/5<br />

0<br />

= 5<br />

4π<br />

<br />

− cos<br />

2π<br />

5 t +1 = 5<br />

4π<br />

<br />

1 − cos<br />

2π<br />

5 t liters<br />

2π dv substitute v = 2π 5 u, dv = 2π 5 du<br />

81. Let u =2x. Thendu =2dx,so 2<br />

f(2x) dx = 4<br />

f(u) 1<br />

du <br />

= 1 4 f(u) du = 1 (10) = 5.<br />

0 0 2 2 0 2<br />

83. Let u = −x. Thendu = −dx,so<br />

b f(−x) dx = −b<br />

a<br />

f(u)(−du) = −a<br />

−a −b<br />

f(u) du = −a<br />

f(x) dx<br />

−b<br />

From the diagram, we see that the equality follows from the fact that we are<br />

reflecting the graph of f, and the limits of integration, about the y-axis.<br />

85. Let u =1− x. Thenx =1− u and dx = −du,so<br />

1<br />

0 xa (1 − x) b dx = 0<br />

(1 − 1 u)a u b (−du) = 1<br />

0 ub (1 − u) a du = 1<br />

0 xb (1 − x) a dx.<br />

87.<br />

x sin x<br />

1+cos 2 x = x · sin x<br />

t<br />

2 − sin 2 = xf(sin x),wheref(t) = . By Exercise 86,<br />

x 2 − t2 π<br />

0<br />

<br />

x sin x<br />

π<br />

1+cos 2 x dx = xf(sin x) dx = π 2<br />

0<br />

π<br />

0<br />

f(sin x) dx = π 2<br />

Let u =cosx. Thendu = − sin xdx.Whenx = π, u = −1 and when x =0, u =1.So<br />

<br />

π π<br />

2 0<br />

sin x<br />

1+cos 2 x dx = − π −1<br />

2 1<br />

du<br />

1+u = π 1<br />

2 2 −1<br />

= π 2 [tan−1 1 − tan −1 (−1)] = π 2<br />

π<br />

0<br />

sin x<br />

1+cos 2 x dx<br />

du<br />

1+u = π <br />

tan −1 u 1<br />

2 2<br />

−1<br />

π<br />

<br />

4 − − π <br />

= π2<br />

4 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!