30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 5.5 THE SUBSTITUTION RULE ¤ 253<br />

53. Let u =1+2x 3 ,sodu =6x 2 dx. Whenx =0, u =1;whenx =1, u =3.Thus,<br />

1 x2 1+2x 35 dx = 3<br />

u5 1<br />

du <br />

= 1 1 u6 3<br />

= 1<br />

0 1 6 6 6 1 36 (36 − 1 6 )= 1 728<br />

(729 − 1) = = 182 .<br />

36 36 9<br />

55. Let u = t/4, sodu = 1 dt. Whent =0, u =0;whent = π, u = π/4. Thus,<br />

4<br />

π<br />

0 sec2 (t/4) dt = π/4<br />

sec 2 u (4 du) =4 tan u π/4<br />

=4 tan π − tan 0 =4(1− 0) = 4.<br />

0 0<br />

4<br />

π/6<br />

57.<br />

−π/6 tan3 θdθ=0by Theorem 7(b), since f(θ) =tan 3 θ is an odd function.<br />

59. Let u =1/x, sodu = −1/x 2 dx. Whenx =1, u =1;whenx =2, u = 1 2 . Thus,<br />

2<br />

e 1/x<br />

1<br />

x 2 dx = 1/2<br />

1<br />

e u (−du) =− e u 1/2<br />

1<br />

= −(e 1/2 − e) =e − √ e.<br />

61. Let u =1+2x,sodu =2dx. Whenx =0, u =1;whenx =13, u =27.Thus,<br />

13<br />

<br />

dx<br />

27<br />

= u (1 −2/3 <br />

1<br />

du 1<br />

= · 3u1/3 27<br />

= 3 (3 − 1) = 3.<br />

+ 2x) 2 2 2 2<br />

1<br />

0<br />

3<br />

1<br />

63. Let u = x 2 + a 2 ,sodu =2xdxand xdx= 1 2 du. Whenx =0, u = a2 ;whenx = a, u =2a 2 . Thus,<br />

a<br />

0<br />

1<br />

x 2a<br />

2<br />

x 2 + a 2 dx = u 1/2 1<br />

du<br />

a 2 2<br />

= 1 2<br />

0<br />

0<br />

<br />

2<br />

3 u3/2 2a 2<br />

a 2 =<br />

<br />

1<br />

u3/2 2a 2 <br />

3<br />

= 1 (2a 2<br />

a 2 3<br />

) 3/2 − (a 2 ) 3/2 <br />

= 1 2 √ <br />

3<br />

2 − 1 a 3<br />

65. Let u = x − 1,sou +1=x and du = dx. Whenx =1, u =0;whenx =2, u =1. Thus,<br />

2<br />

x √ 1<br />

x − 1 dx = (u +1) √ 1<br />

<br />

udu= (u 3/2 + u 1/2 2<br />

) du =<br />

5 u5/2 + 2 u3/2 1<br />

= 2 + 2 = 16 .<br />

3 5 3 15<br />

67. Let u =lnx, sodu = dx x .Whenx = e, u =1;whenx = e4 ; u =4.Thus,<br />

0<br />

e<br />

4<br />

e<br />

0<br />

<br />

dx<br />

4<br />

x √ ln x = u −1/2 du =2<br />

u 1/2 4<br />

=2(2− 1) = 2.<br />

1<br />

1<br />

69. Let u = e z + z,sodu =(e z +1)dz. Whenz =0, u =1;whenz =1, u = e +1. Thus,<br />

1<br />

e z <br />

+1<br />

e+1<br />

e z + z dz = 1<br />

e+1<br />

u du = ln |u| =ln|e +1| − ln |1| =ln(e +1).<br />

1<br />

1<br />

71. From the graph, it appears that the area under the curve is about<br />

1+ a little more than 1 2 · 1 · 0.7 , or about 1.4. The exact area is given by<br />

A = 1 √<br />

0 2x +1dx. Letu =2x +1,sodu =2dx. The limits change to<br />

2 · 0+1=1and 2 · 1+1=3,and<br />

A = √<br />

3<br />

3<br />

1 u 1 du √ √<br />

2<br />

= 1 2<br />

2 3 u3/2 = 1 3 3 3 − 1 = 3 −<br />

1<br />

≈ 1.399.<br />

3<br />

1<br />

73. First write the integral as a sum of two integrals:<br />

I = 2<br />

−2 (x +3)√ 4 − x 2 dx = I 1 + I 2 = 2<br />

−2 x √ 4 − x 2 dx + 2<br />

−2 3 √ 4 − x 2 dx. I 1 =0by Theorem 7(b), since<br />

f(x) =x √ 4 − x 2 is an odd function and we are integrating from x = −2 to x =2. We interpret I 2 as three times the area of<br />

a semicircle with radius 2,soI =0+3· 1<br />

2<br />

<br />

π · 2<br />

2 =6π.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!