30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

252 ¤ CHAPTER 5 INTEGRALS<br />

TX.10<br />

<br />

<br />

sin 2x<br />

sin x cos x<br />

35.<br />

1+cos 2 x dx =2 dx =2I. Letu =cosx. Thendu = − sin xdx,so<br />

1+cos 2 x<br />

<br />

udu<br />

2I = −2<br />

1+u = −2 · 1 ln(1 + 2 2 u2 )+C = − ln(1 + u 2 )+C = − ln(1 + cos 2 x)+C.<br />

<br />

37.<br />

Or: Let u =1+cos 2 x.<br />

<br />

cos x<br />

cot xdx=<br />

sin x dx. Letu =sinx. Thendu =cosxdx,so<br />

39. Let u =secx. Thendu =secx tan xdx,so<br />

<br />

sec 3 x tan xdx= sec 2 x (sec x tan x) dx = u 2 du = 1 3 u3 + C = 1 3 sec3 x + C.<br />

41. Let u =sin −1 x.Thendu =<br />

<br />

1<br />

√ dx,so 1 − x<br />

2<br />

1<br />

cot xdx= du =ln|u| + C =ln|sin x| + C.<br />

u<br />

dx<br />

√<br />

1 − x2 sin −1 x = 1<br />

u du =ln|u| + C =ln sin −1 x + C.<br />

43. Let u =1+x 2 .Thendu =2xdx,so<br />

1+x<br />

1+x 2 dx = <br />

<br />

1<br />

1+x dx + 2<br />

<br />

x<br />

1+x dx 2 =tan−1 x +<br />

1<br />

2 du<br />

u<br />

=tan−1 x + 1 2 ln|u| + C<br />

=tan −1 x + 1 2 ln 1+x 2 + C =tan −1 x + 1 2 ln 1+x 2 + C [since 1+x 2 > 0].<br />

45. Let u = x +2.Thendu = dx,so<br />

<br />

<br />

x<br />

u − 2<br />

4√ dx = x +2<br />

4√ du = (u 3/4 − 2u −1/4 ) du = 4 7 u7/4 − 2 · 4<br />

3 u3/4 + C<br />

u<br />

= 4 7 (x +2)7/4 − 8 3 (x +2)3/4 + C<br />

In Exercises 47–50, let f(x) denote the integrand and F (x) its antiderivative (with C =0).<br />

47. f(x) =x(x 2 − 1) 3 . u = x 2 − 1 ⇒ du =2xdx,so<br />

<br />

x(x 2 − 1) 3 dx = u 3 1<br />

2 du = 1 8 u4 + C = 1 8 (x2 − 1) 4 + C<br />

Where f is positive (negative), F is increasing (decreasing). Where f<br />

changes from negative to positive (positive to negative), F has a local<br />

minimum (maximum).<br />

49. f(x) =sin 3 x cos x. u =sinx ⇒ du =cosxdx,so<br />

<br />

sin 3 x cos xdx= u 3 du = 1 4 u4 + C = 1 4 sin4 x + C<br />

Note that at x = π 2<br />

, f changes from positive to negative and F has a local<br />

maximum. Also, both f and F are periodic with period π,soatx =0and<br />

at x = π, f changes from negative to positive and F has local minima.<br />

51. Let u = x − 1, sodu = dx. Whenx =0, u = −1; whenx =2, u =1. Thus, 2<br />

0 (x − 1)25 dx = 1<br />

−1 u25 du =0by<br />

Theorem 7(b), since f(u) =u 25 is an odd function.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!