30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

242 ¤ CHAPTER 5 INTEGRALS<br />

TX.10<br />

63. Using right endpoints as in the proof of Property 2, we calculate<br />

b<br />

n<br />

cf(x) dx = lim cf(x<br />

a i ) ∆x = lim c n f(x i ) ∆x = c lim<br />

n→∞<br />

n→∞<br />

i=1<br />

65. Since − |f(x)| ≤ f(x) ≤ |f(x)|, it follows from Property 7 that<br />

i=1<br />

n<br />

n→∞ i=1<br />

f(x i ) ∆x = c b<br />

f(x) dx.<br />

a<br />

− b<br />

|f(x)| dx ≤ b<br />

f(x) dx ≤ <br />

b<br />

|f(x)| dx ⇒ <br />

b f(x) dx b<br />

a a a a ≤ |f(x)| dx<br />

a<br />

Note that the definite integral is a real number, and so the following property applies: −a ≤ b ≤ a ⇒ |b| ≤ a for all real<br />

numbers b and nonnegative numbers a.<br />

67. To show that f is integrable on [0, 1] , we must show that lim<br />

<br />

the interval [0, 1] into n equal subintervals 0, 1 <br />

,<br />

n<br />

subinterval, then we obtain the Riemann sum n <br />

i=1<br />

choose x ∗ i to be an irrational number. Then we get<br />

lim<br />

n<br />

n→∞ i=1<br />

n→∞ i=1<br />

1<br />

n , 2 n<br />

, ... ,<br />

n<br />

f(x ∗ i ) ∆x exists. Let n denote a positive integer and divide<br />

n − 1<br />

n<br />

f(x ∗ i ) · 1 =0,so lim<br />

n n→∞<br />

n<br />

i=1<br />

f(x ∗ i ) · 1<br />

n = lim 1=1. Since the value of lim<br />

n→∞ n→∞<br />

limit does not exist, and f is not integrable on [0, 1].<br />

69. lim<br />

n<br />

n→∞ i=1<br />

lim<br />

n→∞ i=1<br />

i 4<br />

n = lim<br />

5 n→∞<br />

n<br />

i=1<br />

i 4<br />

n · 1<br />

4 n = lim<br />

n→∞<br />

n<br />

i=1<br />

i<br />

n<br />

f(x ∗ i ) · 1<br />

n = n <br />

i=1<br />

, 1 <br />

. If we choose x ∗ i to be a rational number in the ith<br />

n<br />

i=1<br />

f(x ∗ i ) · 1<br />

n = lim 0=0. Now suppose we<br />

n→∞<br />

1 · 1<br />

n = n · 1 =1for each n, so<br />

n<br />

n<br />

f(x ∗ i ) ∆x depends on the choice of the sample points x ∗ i ,the<br />

i=1<br />

4<br />

1<br />

. At this point, we need to recognize the limit as being of the form<br />

n<br />

n<br />

f(x i ) ∆x,where∆x =(1− 0)/n =1/n, x i =0+i ∆x = i/n,andf(x) =x 4 . Thus, the definite integral<br />

is 1<br />

0 x4 dx.<br />

71. Choose x i =1+ i n and x∗ i = √ x i−1 x i =<br />

2 1<br />

1 x−2 dx = lim<br />

n→∞ n<br />

n<br />

i=1<br />

= lim n n<br />

n→∞ i=1<br />

<br />

<br />

1+<br />

i − 1<br />

n<br />

<br />

1+ i − 1 <br />

1+ i <br />

.Then<br />

n n<br />

1<br />

<br />

1+<br />

i<br />

n<br />

1<br />

n + i − 1 − 1<br />

n + i<br />

= lim<br />

n→∞ n 1<br />

n + 1<br />

n +1 + ···+ 1<br />

= lim<br />

n→∞ n 1<br />

n − 1<br />

2n<br />

<br />

= lim n n<br />

n→∞ i=1<br />

<br />

2n − 1<br />

[by the hint]<br />

<br />

= lim 1 −<br />

1<br />

n→∞ 2 =<br />

1<br />

2<br />

1<br />

(n + i − 1)(n + i)<br />

n−1<br />

= lim n 1<br />

n→∞ i=0 n + i − n<br />

1<br />

−<br />

n +1 + ···+ 1<br />

2n − 1 + 1<br />

2n<br />

<br />

1<br />

i=1 n + i<br />

<br />

5.3 The Fundamental Theorem of Calculus<br />

1. Oneprocessundoeswhattheotheronedoes.Thepreciseversion of this statement is given by the Fundamental Theorem of<br />

Calculus. See the statement of this theorem and the paragraph that follows it on page 387.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!