30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 5.2 THEDEFINITEINTEGRAL ¤ 241<br />

35.<br />

3<br />

0<br />

1<br />

2 x − 1 dx can be interpreted as the area of the triangle above the x-axis<br />

minus the area of the triangle below the x-axis; that is,<br />

1<br />

(1) <br />

1<br />

2 2 −<br />

1<br />

(2)(1) = 1 − 1=− 3 . 0<br />

2 4 4<br />

37.<br />

0<br />

√ <br />

−3 1+ 9 − x<br />

2<br />

dx can be interpreted as the area under the graph of<br />

f(x) =1+ √ 9 − x 2 between x = −3 and x =0. This is equal to one-quarter<br />

the area of the circle with radius 3, plus the area of the rectangle, so<br />

0<br />

√ <br />

−3 1+ 9 − x<br />

2<br />

dx = 1 π · 4 32 +1· 3=3+ 9 π. 4<br />

39.<br />

2<br />

|x| dx can be interpreted as the sum of the areas of the two shaded<br />

−1<br />

triangles; that is, 1 2 (1)(1) + 1 2 (2)(2) = 1 2 + 4 2 = 5 2 . 0<br />

π<br />

41.<br />

π sin2 x cos 4 xdx=0since the limits of intergration are equal.<br />

43.<br />

45.<br />

47.<br />

1 (5 − 0 6x2 ) dx = 1<br />

5 dx − 6 1<br />

0 0 x2 dx =5(1− 0) − 6 <br />

1<br />

3 =5− 2=3<br />

3<br />

1 ex +2 dx = 3<br />

1 ex · e 2 dx = e 2 3<br />

1 ex dx = e 2 (e 3 − e) =e 5 − e 3<br />

2 f(x) dx + 5<br />

f(x) dx − −1<br />

f(x) dx = 5<br />

f(x) dx + −2<br />

f(x) dx [byProperty5andreversinglimits]<br />

−2 2 −2 −2 −1<br />

= 5<br />

f(x) dx [Property 5]<br />

−1<br />

9<br />

49. [2f(x)+3g(x)] dx =2 9<br />

f(x) dx +3 9<br />

g(x) dx = 2(37) + 3(16) = 122<br />

0 0 0<br />

51. Using Integral Comparison Property 8, m ≤ f(x) ≤ M ⇒ m(2 − 0) ≤ 2<br />

f(x) dx ≤ M(2 − 0) ⇒<br />

0<br />

2m ≤ 2<br />

f(x) dx ≤ 2M.<br />

0<br />

53. If −1 ≤ x ≤ 1, then0 ≤ x 2 ≤ 1 and 1 ≤ 1+x 2 ≤ 2, so1 ≤ √ 1+x 2 ≤ √ 2 and<br />

1[1 − (−1)] ≤ 1<br />

√<br />

1+x2 dx ≤ √ 2[1− (−1)] [Property 8]; that is, 2 ≤ 1<br />

√<br />

1+x2 dx ≤ 2 √ 2.<br />

−1<br />

−1<br />

55. If 1 ≤ x ≤ 4,then1 ≤ √ x ≤ 2, so 1(4 − 1) ≤ 4 √ 4 √<br />

1 xdx≤ 2(4 − 1); that is, 3 ≤<br />

1 xdx≤ 6.<br />

57. If π ≤ x ≤ π ,then1 ≤ tan x ≤ √ 3,so1 π<br />

− π π/3<br />

4 3 3 4 ≤ tan xdx≤ √ 3 π<br />

− π<br />

π/4 3 4 or<br />

π<br />

≤ π/3<br />

tan xdx≤ √ π<br />

12 π/4 12 3.<br />

59. The only critical number of f(x) =xe −x on [0, 2] is x =1.Sincef(0) = 0, f(1) = e −1 ≈ 0.368, and<br />

61.<br />

f(2) = 2e −2 ≈ 0.271, we know that the absolute minimum value of f on [0, 2] is 0, and the absolute maximum is e −1 .By<br />

Property 8, 0 ≤ xe −x ≤ e −1 for 0 ≤ x ≤ 2 ⇒ 0(2 − 0) ≤ 2<br />

0 xe−x dx ≤ e −1 (2 − 0) ⇒ 0 ≤ 2<br />

0 xe−x dx ≤ 2/e.<br />

√<br />

x4 +1≥ √ x 4 = x 2 ,so 3<br />

√<br />

x4 +1dx ≥ 3<br />

<br />

1<br />

1 x2 dx = 1 3 3 3 − 1 3 = 26 . 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!