30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 5.2 THEDEFINITEINTEGRAL ¤ 237<br />

21. lim<br />

n<br />

n→∞ i=1<br />

π iπ<br />

tan<br />

4n 4n can be interpreted as the area of the region lying under the graph of y =tanx on the interval <br />

0, π 4 ,<br />

since for y =tanx on <br />

0, π π/4 − 0<br />

4 with ∆x =<br />

n<br />

<br />

n<br />

n iπ<br />

A = lim f (x ∗ i ) ∆x = lim tan<br />

n→∞<br />

n→∞ 4n<br />

i=1<br />

i=1<br />

= π iπ<br />

, xi =0+i ∆x =<br />

4n 4n ,andx∗ i = x i, the expression for the area is<br />

π<br />

. Note that this answer is not unique, since the expression for the area is<br />

4n<br />

the same for the function y =tan(x − kπ) on the interval kπ, kπ + π 4<br />

<br />

,wherek is any integer.<br />

23. (a) y = f(x) =x 5 . ∆x = 2 − 0<br />

n<br />

(b)<br />

(c)<br />

A = lim Rn = lim<br />

n→∞ n→∞<br />

n<br />

i=1<br />

= 2 n and x i =0+i ∆x = 2i<br />

n .<br />

n<br />

f(x i) ∆x = lim<br />

i=1<br />

i 5 CAS<br />

= n2 (n +1) 2 2n 2 +2n − 1 <br />

12<br />

n→∞ i=1<br />

<br />

n 2i<br />

n<br />

5<br />

· 2<br />

n = lim<br />

n→∞<br />

n<br />

i=1<br />

32i 5<br />

n · 2<br />

5 n = lim 64<br />

n→∞ n 6<br />

64<br />

lim<br />

n→∞ n · n2 (n +1) 2 2n 2 +2n − 1 <br />

= 64<br />

<br />

n 2<br />

6 12<br />

12 lim +2n +1 2n 2 +2n − 1 <br />

n→∞<br />

n 2 · n 2<br />

= 16 1+<br />

3 lim 2 n→∞ n + 1 2+ 2 n 2 n − 1 <br />

n 2<br />

25. y = f(x) =cosx. ∆x = b − 0<br />

n<br />

A = lim R n = lim<br />

n→∞ n→∞<br />

= b n<br />

n<br />

f(x i ) ∆x = lim<br />

i=1<br />

If b = π 2 ,thenA =sinπ 2 =1.<br />

and xi =0+i ∆x =<br />

bi<br />

n .<br />

n→∞ i=1<br />

<br />

n bi<br />

cos<br />

n<br />

<br />

· b CAS<br />

= lim<br />

n n→∞<br />

⎡<br />

⎢<br />

⎣<br />

= 16 3<br />

1<br />

b sin b<br />

n<br />

i 5 .<br />

i=1<br />

· 1 · 2=<br />

32<br />

3<br />

⎤<br />

2n +1 − b<br />

⎥<br />

b 2n ⎦ CAS<br />

= sinb<br />

2n sin<br />

2n<br />

5.2 The Definite Integral<br />

1. f(x) =3− 1 b − a<br />

x, 2 ≤ x ≤ 14. ∆x =<br />

2<br />

n = 14 − 2 =2.<br />

6<br />

Since we are using left endpoints, x ∗ i = x i−1 .<br />

<br />

L 6 = 6 f(x i−1 ) ∆x<br />

i=1<br />

=(∆x)[f(x 0)+f(x 1)+f(x 2)+f(x 3)+f(x 4)+f(x 5)]<br />

=2[f(2) + f(4) + f(6) + f(8) + f(10) + f(12)]<br />

=2[2+1+0+(−1) + (−2) + (−3)] = 2(−3) = −6<br />

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the<br />

three rectangles below the x-axis; that is, the net area of the rectangles with respect to the x-axis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!