30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 203<br />

69. From the figure, tan α = 5 2<br />

and tan β =<br />

x 3 − x .Since<br />

5<br />

α + β + θ = 180 ◦ = π, θ = π − tan −1 x<br />

<br />

2<br />

− 5 <br />

1<br />

−<br />

x 2<br />

dθ<br />

dx = − 1<br />

5<br />

1+<br />

x<br />

Now dθ<br />

dx =0 ⇒ 5<br />

x 2 +25 = 2<br />

x 2 − 6x +13<br />

= x2<br />

x 2 +25 ·<br />

1+<br />

5 (3 − x)2<br />

−<br />

x2 (3 − x) 2 +4 ·<br />

2<br />

3 − x<br />

2<br />

− tan −1 3 − x<br />

<br />

2<br />

2<br />

(3 − x) 2<br />

2<br />

(3 − x) 2 .<br />

⇒ 2x 2 +50=5x 2 − 30x +65 ⇒<br />

<br />

⇒<br />

3x 2 − 30x +15=0 ⇒ x 2 − 10x +5=0 ⇒ x =5± 2 √ 5. We reject the root with the + sign, since it is larger<br />

than 3.<br />

dθ/dx > 0 for x5 − 2 √ 5,soθ is maximized when<br />

|AP | = x =5− 2 √ 5 ≈ 0.53.<br />

71. In the small triangle with sides a and c and hypotenuse W , sin θ = a W and<br />

cos θ = c W . In the triangle with sides b and d and hypotenuse L, sin θ = d L and<br />

cos θ = b .Thus,a = W sin θ, c = W cos θ, d = L sin θ,andb = L cos θ,sothe<br />

L<br />

area of the circumscribed rectangle is<br />

A(θ)=(a + b)(c + d) =(W sin θ + L cos θ)(W cos θ + L sin θ)<br />

= W 2 sin θ cos θ + WLsin 2 θ + LW cos 2 θ + L 2 sin θ cos θ<br />

= LW sin 2 θ + LW cos 2 θ +(L 2 + W 2 )sinθ cos θ<br />

= LW (sin 2 θ +cos 2 θ)+(L 2 + W 2 ) · 1<br />

2 · 2sinθ cos θ = LW + 1 2 (L2 + W 2 )sin2θ, 0 ≤ θ ≤ π 2<br />

This expression shows, without calculus, that the maximum value of A(θ) occurs when sin 2θ =1 ⇔ 2θ = π 2<br />

⇒<br />

θ = π . So the maximum area is A <br />

π<br />

4 4 = LW +<br />

1<br />

2 (L2 + W 2 )= 1 2 (L2 +2LW + W 2 )= 1 (L + W 2 )2 .<br />

73. (a) If k = energy/km over land, then energy/km over water =1.4k.<br />

So the total energy is E =1.4k √ 25 + x 2 + k(13 − x), 0 ≤ x ≤ 13,<br />

and so dE<br />

dx =<br />

1.4kx<br />

− k.<br />

(25 + x 2 1/2<br />

)<br />

Set dE<br />

dx =0: 1.4kx = k(25 + x2 ) 1/2 ⇒ 1.96x 2 = x 2 +25 ⇒ 0.96x 2 =25 ⇒ x = 5 √<br />

0.96<br />

≈ 5.1.<br />

Testing against the value of E at the endpoints: E(0) = 1.4k(5) + 13k =20k, E(5.1) ≈ 17.9k, E(13) ≈ 19.5k.<br />

Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!