30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 201<br />

55. (a) We are given that the demand function p is linear and p(27,000) = 10, p(33,000) = 8, so the slope is<br />

10 − 8<br />

= − 1 and an equation of the line is y − 10 = <br />

− 1<br />

27,000 − 33,000 3000 3000 (x − 27,000) ⇒<br />

y = p(x) =− 1<br />

3000<br />

x +19=19− (x/3000).<br />

(b) The revenue is R(x) =xp(x) =19x − (x 2 /3000) ⇒ R 0 (x) =19− (x/1500) = 0 when x =28,500. Since<br />

R 00 (x) =−1/1500 < 0, the maximum revenue occurs when x =28,500 ⇒ the price is p(28,500) = $9.50.<br />

57. (a) As in Example 6, we see that the demand function p is linear. We are given that p(1000) = 450 and deduce that<br />

p(1100) = 440,sincea$10 reduction in price increases sales by 100 per week. The slope for p is<br />

so an equation is p − 450 = − 1<br />

1<br />

10<br />

(x − 1000) or p(x) =− x +550.<br />

10<br />

(b) R(x) =xp(x) =− 1 10 x2 +550x. R 0 (x) =− 1 x + 550 = 0 when x = 5(550) = 2750.<br />

5<br />

p(2750) = 275, so the rebate should be 450 − 275 = $175.<br />

440 − 450<br />

1100 − 1000 = − 1 10 ,<br />

(c) C(x) =68,000 + 150x ⇒ P (x) =R(x) − C(x) =− 1<br />

10 x2 + 550x − 68,000 − 150x = − 1<br />

10 x2 +400x − 68,000,<br />

P 0 (x) =− 1 x +400=0 when x =2000. p(2000) = 350. Therefore, the rebate to maximize profits should be<br />

5<br />

450 − 350 = $100.<br />

59. Here s 2 = h 2 + b 2 /4,soh 2 = s 2 − b 2 /4. TheareaisA = 1 2 b s 2 − b 2 /4.<br />

Let the perimeter be p,so2s + b = p or s =(p − b)/2<br />

⇒<br />

A(b) = 1 b (p − b)<br />

2 2 /4 − b 2 /4=b p 2 − 2pb/4. Now<br />

<br />

A 0 p2 − 2pb bp/4<br />

(b) =<br />

− <br />

4 p2 − 2pb = −3pb + p2<br />

4 p 2 − 2pb .<br />

Therefore, A 0 (b) =0 ⇒ −3pb + p 2 =0 ⇒ b = p/3. SinceA 0 (b) > 0 for bp/3,there<br />

is an absolute maximum when b = p/3.Butthen2s + p/3 =p,sos = p/3 ⇒ s = b ⇒ the triangle is equilateral.<br />

61. Note that |AD| = |AP | + |PD| ⇒ 5=x + |PD| ⇒ |PD| =5− x.<br />

Using the Pythagorean Theorem for ∆PDB and ∆PDC gives us<br />

L(x)=|AP | + |BP| + |CP| = x + (5 − x) 2 +2 2 + (5 − x) 2 +3 2<br />

= x + √ x 2 − 10x +29+ √ x 2 − 10x +34 ⇒<br />

L 0 (x) =1+<br />

x − 5<br />

√<br />

x2 − 10x +29 + x − 5<br />

√ . From the graphs of L<br />

x2 − 10x +34<br />

and L 0 , it seems that the minimum value of L is about L(3.59) = 9.35 m.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!