30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 197<br />

29. Thecylinderhassurfacearea<br />

2(area of the base) + (lateral surface area) = 2π(radius) 2 +2π(radius)(height)<br />

=2πy 2 +2πy(2x)<br />

Now x 2 + y 2 = r 2 ⇒ y 2 = r 2 − x 2 ⇒ y = √ r 2 − x 2 , so the surface area is<br />

S(x)=2π(r 2 − x 2 )+4πx √ r 2 − x 2 , 0 ≤ x ≤ r<br />

=2πr 2 − 2πx 2 +4π x √ r 2 − x 2<br />

<br />

<br />

Thus, S 0 (x) =0− 4πx +4π x · 1<br />

2 (r2 − x 2 ) −1/2 (−2x)+(r 2 − x 2 ) 1/2 · 1<br />

<br />

x 2<br />

=4π −x − √<br />

r2 − x + √ <br />

r 2 − x 2 =4π · −x √ r 2 − x 2 − x 2 + r 2 − x 2<br />

√ 2 r2 − x 2<br />

S 0 (x) =0 ⇒ x √ r 2 − x 2 = r 2 − 2x 2 () ⇒ x √ r 2 − x 2 2<br />

=(r 2 − 2x 2 ) 2 ⇒<br />

x 2 (r 2 − x 2 )=r 4 − 4r 2 x 2 +4x 4 ⇒ r 2 x 2 − x 4 = r 4 − 4r 2 x 2 +4x 4 ⇒ 5x 4 − 5r 2 x 2 + r 4 =0.<br />

This is a quadratic equation in x 2 . By the quadratic formula, x 2 = 5 ± √ 5<br />

r 2 , but we reject the root with the + sign since it<br />

10<br />

<br />

5 −<br />

doesn’t satisfy (). [The right side is negative and the left side is positive.] So x =<br />

√ 5<br />

r. SinceS(0) = S(r) =0,the<br />

10<br />

maximum surface area occurs at the critical number and x 2 = 5 − √ 5<br />

10<br />

r 2 ⇒ y 2 = r 2 − 5 − √ 5<br />

10<br />

r 2 = 5+√ 5<br />

10<br />

r 2 ⇒<br />

the surface area is<br />

<br />

2π<br />

5+ √ 5<br />

10<br />

<br />

r 2 +4π<br />

<br />

5 − √ <br />

<br />

5 5+ √ √ √ <br />

5<br />

r 2 = πr 2 2 · 5+√ 5 (5− 5)(5+ 5)<br />

<br />

+4<br />

= πr 2 5+ √ <br />

5<br />

+ 2√ 20<br />

10 10 10 10<br />

5 5<br />

<br />

= πr 2 5+ √ 5+2·2 √ <br />

5<br />

= πr 2 5+5 √ <br />

5<br />

= πr 2 1+ √ 5 .<br />

5<br />

5<br />

31. xy = 384 ⇒ y =384/x. Total area is<br />

A(x) =(8+x)(12 + 384/x) = 12(40 + x +256/x),so<br />

A 0 (x) = 12(1 − 256/x 2 )=0 ⇒ x =16. There is an absolute minimum<br />

when x =16since A 0 (x) < 0 for 0 16.<br />

When x =16, y =384/16 = 24, so the dimensions are 24 cm and 36 cm.<br />

33. Let x be the length of the wire used for the square. The total area is<br />

x<br />

√ <br />

2 1 10 − x 3 10 − x<br />

A(x)= +<br />

4 2 3 2 3<br />

= 1 16 x2 + √ 3<br />

36 (10 − x)2 , 0 ≤ x ≤ 10<br />

A 0 (x) = 1 x − √ √3<br />

3<br />

9<br />

(10 − x) =0 ⇔ x + 4√ 3<br />

x − 40√ 3<br />

=0 ⇔ x = 40√ 3<br />

8 18 72 72 72 9+4 √ .NowA(0) = 3 36<br />

<br />

A(10) = 100 =6.25 and A 40 √ <br />

3<br />

≈ 2.72,so<br />

16<br />

9+4 √ 3<br />

(a ) The maximum area occurs when x =10m, and all the wire is used for the square.<br />

(b) The minimum area occurs when x = 40√ 3<br />

9+4 √ ≈ 4.35 m.<br />

3<br />

<br />

100 ≈ 4.81,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!