30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

e E<br />

75. lim P (E) = lim + e −E<br />

E→0 + E→0 + e E − e − 1 <br />

−E E<br />

TX.10SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 171<br />

E e E + e −E − 1 e E − e −E Ee E + Ee −E − e E + e −E <br />

= lim<br />

= lim<br />

form is<br />

0<br />

E→0 + (e E − e −E ) E<br />

E→0 + Ee E − Ee −E 0<br />

H<br />

= lim<br />

E→0 + Ee E + e E · 1+E −e −E + e −E · 1 − e E + −e −E<br />

Ee E + e E · 1 − [E(−e −E )+e −E · 1]<br />

= lim<br />

E→0 +<br />

Ee E − Ee −E<br />

= lim<br />

Ee E + e E + Ee −E − e−E E→0 +<br />

= 0<br />

e E − e −E<br />

, whereL = lim<br />

2+L E→0 + E<br />

Thus, lim P (E) = 0<br />

E→0 + 2+2 =0.<br />

e E − e −E<br />

e E + eE E + e−E − e−E<br />

E<br />

<br />

form is<br />

0<br />

0<br />

H = lim<br />

E→0 + e E + e −E<br />

1<br />

77. We see that both numerator and denominator approach 0, so we can use l’Hospital’s Rule:<br />

√<br />

2a3 x − x<br />

lim<br />

4 − a 3√ aax<br />

x→a a − 4√ ax 3<br />

[divide by E]<br />

= 1+1<br />

1<br />

=lim<br />

H 1<br />

2 (2a3 x − x 4 ) −1/2 (2a 3 − 4x 3 ) − a <br />

1<br />

3 (aax) −2/3 a 2<br />

x→a − 1 4 (ax3 ) −3/4 (3ax 2 )<br />

=<br />

1<br />

2 (2a3 a − a 4 ) −1/2 (2a 3 − 4a 3 ) − 1 3 a3 (a 2 a) −2/3<br />

− 1 4 (aa3 ) −3/4 (3aa 2 )<br />

=2<br />

= (a4 ) −1/2 (−a 3 ) − 1 3 a3 (a 3 ) −2/3<br />

− 3 4 a3(a4 )−3/4<br />

= −a − 1 3 a<br />

− 3 4<br />

= 4 3<br />

4<br />

3 a = 16 9 a<br />

79. Since f(2) = 0, the given limit has the form 0 0 .<br />

f(2 + 3x)+f(2 + 5x) H f 0 (2 + 3x) · 3+f 0 (2 + 5x) · 5<br />

lim<br />

=lim<br />

= f 0 (2) · 3+f 0 (2) · 5=8f 0 (2) = 8 · 7=56<br />

x→0 x<br />

x→0 1<br />

81. Since lim<br />

h→0<br />

[f(x + h) − f(x − h)] = f(x) − f(x) =0 (f is differentiable and hence continuous) and lim<br />

h→0<br />

2h =0,weuse<br />

l’Hospital’s Rule:<br />

f(x + h) − f(x − h) H f 0 (x + h)(1) − f 0 (x − h)(−1)<br />

lim<br />

=lim<br />

= f 0 (x)+f 0 (x)<br />

= 2f 0 (x)<br />

= f 0 (x)<br />

h→0 2h<br />

h→0 2<br />

2<br />

2<br />

f(x + h) − f(x − h)<br />

2h<br />

is the slope of the secant line between<br />

(x − h, f(x − h)) and (x + h, f(x + h)). Ash → 0,thislinegetscloser<br />

to the tangent line and its slope approaches f 0 (x).<br />

f(x)<br />

83. (a) We show that lim<br />

x→0 x =0for every integer n ≥ 0. Lety = 1 n<br />

x .Then 2<br />

f(x)<br />

lim<br />

x→0 x =lim e −1/x2 y n<br />

2n x→0 (x 2 ) n = lim<br />

y→∞ e y<br />

= H ny n−1<br />

lim<br />

y→∞ e y<br />

= H ··· H= n!<br />

lim<br />

y→∞ e =0 ⇒<br />

y<br />

f(x)<br />

lim<br />

x→0 x = lim f(x)<br />

n x→0 xn x =lim f(x)<br />

2n x→0 xn lim<br />

x→0 x =0.Thus,f 0 f(x) − f(0) f(x)<br />

(0) = lim<br />

= lim<br />

2n<br />

x→0 x − 0 x→0 x =0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!