30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

144 ¤ CHAPTER 3 PROBLEMS PLUS<br />

TX.10<br />

So y 0 =<br />

2(ak − 1)<br />

√<br />

a2 − 1(2ak +2k cos x) = ak − 1<br />

√<br />

a2 − 1k (a +cosx) .Butak − 1=a2 + a √ a 2 − 1 − 1=k √ a 2 − 1,<br />

so y 0 =1/(a +cosx).<br />

27. y = x 4 − 2x 2 − x ⇒ y 0 =4x 3 − 4x − 1. The equation of the tangent line at x = a is<br />

y − (a 4 − 2a 2 − a) =(4a 3 − 4a − 1)(x − a) or y =(4a 3 − 4a − 1)x +(−3a 4 +2a 2 ) and similarly for x = b. Soifat<br />

x = a and x = b we have the same tangent line, then 4a 3 − 4a − 1=4b 3 − 4b − 1 and −3a 4 +2a 2 = −3b 4 +2b 2 .Thefirst<br />

equation gives a 3 − b 3 = a − b ⇒ (a − b)(a 2 + ab + b 2 )=(a − b). Assuming a 6=b, wehave1=a 2 + ab + b 2 .<br />

The second equation gives 3(a 4 − b 4 )=2(a 2 − b 2 ) ⇒ 3(a 2 − b 2 )(a 2 + b 2 )=2(a 2 − b 2 ) which is true if a = −b.<br />

Substituting into 1=a 2 + ab + b 2 gives 1=a 2 − a 2 + a 2 ⇒ a = ±1 so that a =1and b = −1 or vice versa. Thus,<br />

the points (1, −2) and (−1, 0) have a common tangent line.<br />

As long as there are only two such points, we are done. So we show that these are in fact the only two such points.<br />

Suppose that a 2 − b 2 6=0.Then3(a 2 − b 2 )(a 2 + b 2 )=2(a 2 − b 2 ) gives 3(a 2 + b 2 )=2 or a 2 + b 2 = 2 3 .<br />

Thus, ab =(a 2 + ab + b 2 ) − (a 2 + b 2 )=1− 2 3 = 1 3 ,sob = 1<br />

3a . Hence, a2 + 1<br />

9a 2 = 2 3 ,so9a4 +1=6a 2<br />

0=9a 4 − 6a 2 +1=(3a 2 − 1) 2 .So3a 2 − 1=0 ⇒ a 2 = 1 3<br />

that a 2 6=b 2 .<br />

⇒ b 2 = 1<br />

9a 2 = 1 3 = a2 , contradicting our assumption<br />

29. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 × 2 grid shown. We can see that<br />

the minimum value of r occurs when there is a line with slope 2 which touches the circle centered at (3, 1) and the circles<br />

5<br />

centered at (0, 0) and (5, 2).<br />

⇒<br />

To find P , the point at which the line is tangent to the circle at (0, 0), we simultaneously solve x 2 + y 2 = r 2 and<br />

y = − 5 2 x ⇒ x2 + 25 4 x2 = r 2 ⇒ x 2 = 4 29 r2 ⇒ x = 2 √<br />

29<br />

r, y = − 5 √<br />

29<br />

r.Tofind Q, we either use symmetry or<br />

solve (x − 3) 2 +(y − 1) 2 = r 2 and y − 1=− 5 2<br />

2<br />

(x − 3).Asabove,wegetx =3− √<br />

29<br />

r, y =1+ √ 5<br />

29<br />

r. Now the slope of<br />

the line PQis 2 5 ,som PQ =<br />

<br />

1+ √ 5<br />

29<br />

r − − √ 5<br />

29<br />

r<br />

3 − 2 √<br />

29<br />

r − 2 √<br />

29<br />

r<br />

=<br />

10 √<br />

1+ √<br />

29<br />

r 29 + 10r<br />

3 − √ 4<br />

29<br />

r = 3 √ 29 − 4r = 2 5<br />

5 √ 29 + 50r =6 √ 29 − 8r ⇔ 58r = √ 29 ⇔ r = √ 29<br />

58 . So the minimum value of r for which any line with slope 2 5<br />

intersects circles with radius r centered at the lattice points on the plane is r = √ 29<br />

58 ≈ 0.093.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!