30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

CHAPTER 3 PROBLEMS PLUS ¤ 141<br />

(b) By the Law of Cosines, |AP | 2 = |OA| 2 + |OP| 2 − 2 |OA||OP| cos θ<br />

⇒<br />

120 2 =40 2 + |OP| 2 − 2 · 40 |OP| cos θ ⇒ |OP| 2 − (80 cos θ) |OP| − 12,800 = 0 ⇒<br />

|OP| = 1 2<br />

<br />

80 cos θ ±<br />

√ 6400 cos2 θ +51,200 =40cosθ ± 40 √ cos 2 θ +8=40 cos θ + √ 8+cos 2 θ cm<br />

[since |OP| > 0]. As a check, note that |OP| =160cm when θ =0and |OP| =80 √ 2 cm when θ = π 2 .<br />

(c) By part (b), the x-coordinate of P is given by x =40 cos θ + √ 8+cos 2 θ ,so<br />

dx<br />

dt = dx<br />

dθ<br />

<br />

dθ<br />

dt =40 − sin θ −<br />

<br />

<br />

2cosθ sin θ<br />

2 √ · 12π = −480π sin θ 1+<br />

8+cos 2 θ<br />

In particular, dx/dt =0cm/swhenθ =0and dx/dt = −480π cm/swhenθ = π 2 .<br />

13. Consider the statement that<br />

d<br />

dx (eax sin bx) =ae ax sin bx + be ax cos bx,and<br />

d n<br />

dx n (eax sin bx) =r n e ax sin(bx + nθ). Forn =1,<br />

<br />

cos θ<br />

√ cm/s.<br />

8+cos2 θ<br />

re ax sin(bx + θ) =re ax [sin bx cos θ +cosbx sin θ] =re ax a<br />

r sin bx + b r cos bx <br />

= ae ax sin bx + be ax cos bx<br />

since tan θ = b a<br />

⇒ sin θ = b r and cos θ = a . So the statement is true for n =1.<br />

r<br />

But<br />

Assume it is true for n = k. Then<br />

d k+1<br />

dx k+1 (eax sin bx)= d <br />

r k e ax sin(bx + kθ) = r k ae ax sin(bx + kθ)+r k e ax b cos(bx + kθ)<br />

dx<br />

= r k e ax [a sin(bx + kθ)+b cos(bx + kθ)]<br />

sin[bx +(k +1)θ] =sin[(bx + kθ)+θ] =sin(bx + kθ)cosθ +sinθ cos(bx + kθ) = a sin(bx + kθ)+ b cos(bx + kθ).<br />

r r<br />

Hence, a sin(bx + kθ)+b cos(bx + kθ) =r sin[bx +(k +1)θ].So<br />

d k+1<br />

dx k+1 (eax sin bx) =r k e ax [a sin(bx+kθ)+b cos(bx+kθ)] = r k e ax [r sin(bx+(k +1)θ)] = r k+1 e ax [sin(bx+(k +1)θ)].<br />

Therefore, the statement is true for all n by mathematical induction.<br />

15. It seems from the figure that as P approaches the point (0, 2) from the right, x T →∞and y T → 2 + .AsP approaches the<br />

point (3, 0) from the left, it appears that x T → 3 + and y T →∞.Soweguessthatx T ∈ (3, ∞) and y T ∈ (2, ∞). Itis<br />

more difficult to estimate the range of values for x N and y N. We might perhaps guess that x N ∈ (0, 3),<br />

and y N ∈ (−∞, 0) or (−2, 0).<br />

In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the<br />

tangent line: x2<br />

9 + y2<br />

4 =1 ⇒ 2x 9 + 2y 4 y0 =0,soy 0 = − 4 9<br />

x<br />

. So at the point (x0,y0) on the ellipse, an equation of the<br />

y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!