30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

140 ¤ CHAPTER 3 PROBLEMS PLUS<br />

TX.10<br />

d k <br />

Now assume S k is true, that is, sin 4 x +cos 4 x =4 k−1 cos <br />

4x + k π<br />

dx k 2 .Then<br />

d k+1<br />

dx k+1 (sin4 x +cos 4 x)= d <br />

d<br />

k<br />

dx dx k (sin4 x +cos 4 x) = d 4 k−1 cos <br />

4x + k π 2<br />

dx<br />

which shows that S k+1 is true.<br />

Therefore,<br />

Another proof: First write<br />

= −4 k−1 sin <br />

4x + k π d<br />

2 ·<br />

dx<br />

=4 k sin −4x − k π 2<br />

<br />

4x + k<br />

π<br />

2 = −4 k sin <br />

4x + k π 2<br />

=4 k cos π<br />

2 − −4x − k π 2<br />

=4 k cos 4x +(k +1) π 2<br />

d n<br />

dx n (sin4 x +cos 4 x)=4 n−1 cos <br />

4x + n π 2 for every positive integer n, by mathematical induction.<br />

sin 4 x +cos 4 x =(sin 2 x +cos 2 x) 2 − 2sin 2 x cos 2 x =1− 1 2 sin2 2x =1− 1 (1 − cos 4x) = 3 + 1 cos 4x<br />

4 4 4<br />

<br />

Then we have dn<br />

dx n (sin4 x +cos 4 x)= dn 3<br />

dx n 4 + 1 <br />

4 cos 4x = 1 <br />

4 · 4n cos 4x + n π <br />

=4 n−1 cos 4x + n π <br />

.<br />

2<br />

2<br />

9. We must find a value x 0 such that the normal lines to the parabola y = x 2 at x = ±x 0 intersectatapointoneunitfromthe<br />

points <br />

±x 0 ,x 2 0 . The normals to y = x 2 at x = ±x 0 have slopes − 1 and pass through <br />

±x 0 ,x 2 0 respectively, so the<br />

±2x 0<br />

normals have the equations y − x 2 0 = − 1<br />

2x 0<br />

(x − x 0) and y − x 2 0 = 1<br />

2x 0<br />

(x + x 0). The common y-intercept is x 2 0 + 1 2 .<br />

We want to find the value of x 0 for which the distance from 0,x 2 0 + 1 2<br />

<br />

to<br />

<br />

x0,x 2 0<br />

equals 1. The square of the distance is<br />

(x 0 − 0) 2 + x 2 0 − x 2 0 + 1 2<br />

the center of the circle is at 0, 5 4<br />

.<br />

2<br />

= x 2 0 + 1 4 =1 ⇔ x 0 = ± √ 3<br />

2 .Forthesevaluesofx 0,they-intercept is x 2 0 + 1 2 = 5 4 ,so<br />

Another solution: Let the center of the circle be (0,a). Then the equation of the circle is x 2 +(y − a) 2 =1.<br />

Solving with the equation of the parabola, y = x 2 ,wegetx 2 +(x 2 − a) 2 =1 ⇔ x 2 + x 4 − 2ax 2 + a 2 =1 ⇔<br />

x 4 +(1− 2a)x 2 + a 2 − 1=0. The parabola and the circle will be tangent to each other when this quadratic equation in x 2<br />

<br />

has equal roots; that is, when the discriminant is 0. Thus,(1 − 2a) 2 − 4(a 2 − 1) = 0<br />

⇔<br />

1 − 4a +4a 2 − 4a 2 +4=0 ⇔ 4a =5,soa = 5 4 . The center of the circle is 0, 5 4<br />

<br />

.<br />

11. We can assume without loss of generality that θ =0at time t =0,sothatθ =12πt rad. [The angular velocity of the wheel<br />

is 360 rpm =360· (2π rad)/(60 s) =12π rad/s.] Then the position of A as a function of time is<br />

A =(40cosθ, 40 sin θ) = (40 cos 12πt, 40 sin 12πt),sosin α =<br />

y 40 sin θ<br />

= = sin θ = 1 sin 12πt.<br />

1.2 m 120 3 3<br />

(a) Differentiating the expression for sin α,wegetcos α · dα<br />

dt = 1 3 · 12π · cos 12πt =4π cos θ. Whenθ = π 3 ,wehave<br />

sin α = 1 √<br />

<br />

√ 2 <br />

3<br />

3 11<br />

3 sin θ = 6 ,socos α = dα<br />

1 − = and<br />

6 12 dt = 4π cos π 3<br />

cos α = 2π<br />

= 4π √ 3<br />

√ ≈ 6.56 rad/s.<br />

11/12 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!