30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 125<br />

(b) S =6x 2 ⇒ dS =12xdx.Whenx =30and dx =0.1, dS = 12(30)(0.1) = 36, so the maximum possible error in<br />

computing the surface area of the cube is about 36 cm 2 .<br />

Relative error = ∆S<br />

S<br />

≈ dS S = 12xdx =2 dx 0.1<br />

6x 2 x =2 30<br />

=0.006.<br />

Percentage error = relative error × 100% = 0.006 × 100% = 0.6%.<br />

35. (a)Forasphereofradiusr, the circumference is C =2πr and the surface area is S =4πr 2 ,so<br />

r = C 2 C<br />

2π ⇒ S =4π = C2<br />

⇒ dS = 2 2π π<br />

π CdC.WhenC =84and dC =0.5, dS = 2 84<br />

(84)(0.5) =<br />

π π ,<br />

so the maximum error is about 84<br />

π ≈ 27 cm2 . Relative error ≈ dS S = 84/π<br />

84 2 /π = 1<br />

84 ≈ 0.012<br />

(b) V = 4 3 πr3 = 4 3 π C<br />

2π<br />

3<br />

= C3<br />

6π 2 ⇒ dV = 1<br />

2π 2 C2 dC. WhenC =84and dC =0.5,<br />

dV = 1<br />

2π 2 (84)2 (0.5) = 1764<br />

1764<br />

, so the maximum error is about ≈ 179 cm 3 .<br />

π2 π 2<br />

The relative error is approximately dV V = 1764/π2<br />

(84) 3 /(6π 2 ) = 1 56 ≈ 0.018.<br />

37. (a) V = πr 2 h ⇒ ∆V ≈ dV =2πrh dr =2πrh ∆r<br />

(b) The error is<br />

∆V − dV =[π(r + ∆r) 2 h − πr 2 h] − 2πrh ∆r = πr 2 h +2πrh ∆r + π(∆r) 2 h − πr 2 h − 2πrh ∆r = π(∆r) 2 h.<br />

39. V = RI ⇒ I = V R ⇒ dI = − V ∆I<br />

dR. The relative error in calculating I is ≈ dI<br />

R2 I I = −(V/R2 ) dR<br />

= − dR V/R R .<br />

Hence, the relative error in calculating I is approximately the same (in magnitude) as the relative error in R.<br />

41. (a) dc = dc dx =0dx =0<br />

dx<br />

(c) d(u + v) = d<br />

du<br />

dx (u + v) dx = dx + dv<br />

dx<br />

(d) d(uv) = d <br />

dx (uv) dx = u dv<br />

dx + v du<br />

dx<br />

u<br />

<br />

(e) d = d u<br />

v du<br />

dx = dx − u dv<br />

dx dx =<br />

v dx v<br />

v 2<br />

(f ) d (x n )= d<br />

dx (xn ) dx = nx n−1 dx<br />

<br />

dx = du dv<br />

dx + dx = du + dv<br />

dx dx<br />

<br />

dx = u dv du<br />

dx + v dx = udv+ vdu<br />

dx dx<br />

v du dv<br />

dx − u<br />

dx dx dx vdu− udv<br />

=<br />

v 2<br />

v 2<br />

43. (a) The graph shows that f 0 (1) = 2,soL(x) =f(1) + f 0 (1)(x − 1) = 5 + 2(x − 1) = 2x +3.<br />

f(0.9) ≈ L(0.9) = 4.8 and f(1.1) ≈ L(1.1) = 5.2.<br />

d<br />

du<br />

(b) d(cu) = (cu) dx = c dx = cdu<br />

dx dx<br />

(b) From the graph, we see that f 0 (x) is positive and decreasing. This means that the slopes of the tangent lines are positive,<br />

but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too<br />

large.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!