30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

118 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

9. (a) If y(t) is the mass (in mg) remaining after t years, then y(t) =y(0)e kt =100e kt .<br />

y(30) = 100e 30k = 1 (100) ⇒ 2 e30k = 1 2<br />

⇒ k = −(ln 2)/30 ⇒ y(t) = 100e −(ln 2)t/30 = 100 · 2 −t/30<br />

(b) y(100) = 100 · 2 −100/30 ≈ 9.92 mg<br />

(c) 100e −(ln 2)t/30 =1 ⇒ −(ln 2)t/30 = ln 1<br />

ln 0.01<br />

100<br />

⇒ t = −30<br />

ln 2<br />

≈ 199.3 years<br />

11. Let y(t) be the level of radioactivity. Thus, y(t) =y(0)e −kt and k is determined by using the half-life:<br />

y(5730) = 1 y(0) ⇒ 2 y(0)e−k(5730) = 1 y(0) ⇒ 2 e−5730k = 1 ⇒ −5730k =ln 1 ⇒ k = − ln 1 2<br />

2 2<br />

5730 = ln 2<br />

5730 .<br />

If 74% of the 14 C remains, then we know that y(t) =0.74y(0) ⇒ 0.74 = e −t(ln 2)/5730 ⇒ ln 0.74 = − t ln 2 ⇒<br />

5730<br />

5730(ln 0.74)<br />

t = − ≈ 2489 ≈ 2500 years.<br />

ln 2<br />

13. (a) Using Newton’s Law of Cooling, dT<br />

dt = k(T − T s), wehave dT = k(T − 75). Nowlety = T − 75, so<br />

dt<br />

y(0) = T (0) − 75 = 185 − 75 = 110,soy is a solution of the initial-value problem dy/dt = ky with y(0) = 110 and by<br />

Theorem 2 we have y(t) =y(0)e kt =110e kt .<br />

y(30) = 110e 30k =150− 75 ⇒ e 30k = 75 = 15<br />

110 22<br />

⇒ k = 1 15<br />

30<br />

ln ,soy(t) = 110e 30 1 t ln( 15<br />

22 )<br />

22 and<br />

y(45) = 110e 45<br />

30<br />

ln( 15<br />

22 ) ≈ 62 ◦ F.Thus,T (45) ≈ 62 + 75 = 137 ◦ F.<br />

(b) T (t) =100 ⇒ y(t) =25. y(t) = 110e 30 1 t ln( 15<br />

1<br />

22 ) =25 ⇒ e 30<br />

t ln( 15<br />

22 ) =<br />

25<br />

110<br />

⇒ 1 15 25<br />

30<br />

t ln<br />

22<br />

=ln110 ⇒<br />

25<br />

30 ln<br />

110<br />

t =<br />

ln 15 ≈ 116 min.<br />

22<br />

dT<br />

15. = k(T − 20). Lettingy = T − 20, wegetdy<br />

dt dt = ky,soy(t) =y(0)ekt . y(0) = T (0) − 20 = 5 − 20 = −15, so<br />

y(25) = y(0)e 25k = −15e 25k ,andy(25) = T (25) − 20 = 10 − 20 = −10,so−15e 25k = −10 ⇒ e 25k = 2 . Thus,<br />

3<br />

25k =ln <br />

2<br />

3 and k =<br />

1<br />

ln <br />

2<br />

25 3 ,soy(t) =y(0)e kt = −15e (1/25) ln(2/3)t .Moresimply,e 25k = 2 ⇒ e k = <br />

2 1/25<br />

⇒<br />

3 3<br />

e kt = <br />

2 t/25<br />

⇒ y(t) =−15 · <br />

2 t/25<br />

.<br />

3<br />

3<br />

(a) T (50) = 20 + y(50) = 20 − 15 · <br />

2 50/25<br />

=20− 15 · <br />

2 2<br />

=20− 20 =13.¯3 ◦ C<br />

3<br />

3<br />

3<br />

(b) 15 = T (t) =20+y(t) =20− 15 · <br />

2 t/25<br />

3<br />

⇒ 15 · <br />

2 t/25<br />

3<br />

=5 ⇒ <br />

2 t/25<br />

3<br />

= 1 3<br />

⇒<br />

(t/25) ln <br />

2<br />

3 =ln 1<br />

<br />

⇒ t =25ln <br />

1<br />

3<br />

3 ln 2<br />

<br />

3 ≈ 67.74 min.<br />

17. (a) Let P (h) be the pressure at altitude h. ThendP/dh = kP ⇒ P (h) =P (0)e kh =101.3e kh .<br />

P (1000) = 101.3e 1000k =87.14 ⇒ 1000k =ln <br />

87.14<br />

⇒ k = 1 ln <br />

87.14<br />

⇒<br />

101.3<br />

1000 101.3<br />

P (h) =101.3 e 1000 1 h ln( 87.14<br />

101.3) ,soP (3000) = 101.3e<br />

3ln( 87.14<br />

101.3 ) ≈ 64.5 kPa.<br />

(b) P (6187) = 101.3 e 6187 ln( 87.14<br />

1000 101.3 ) ≈ 39.9 kPa

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!