30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

110 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

69. x 2 +4y 2 =5 ⇒ 2x +4(2yy 0 )=0 ⇒ y 0 = − x .Nowleth be the height of the lamp, and let (a, b) be the point of<br />

4y<br />

tangency of the line passing through the points (3,h) and (−5, 0). Thislinehasslope(h − 0)/[3 − (−5)] = 1 8 h.Butthe<br />

slope of the tangent line through the point (a, b) can be expressed as y 0 = − a 4b ,oras b − 0<br />

a − (−5) = b [since the line<br />

a +5<br />

passes through (−5, 0) and (a, b)], so − a 4b =<br />

b<br />

a +5<br />

⇔ 4b 2 = −a 2 − 5a ⇔ a 2 +4b 2 = −5a. Buta 2 +4b 2 =5<br />

[since (a, b) is on the ellipse], so 5=−5a ⇔ a = −1. Then4b 2 = −a 2 − 5a = −1 − 5(−1) = 4 ⇒ b =1, since the<br />

point is on the top half of the ellipse. So h 8 =<br />

x-axis.<br />

b<br />

a +5 = 1<br />

−1+5 = 1 4<br />

⇒<br />

h =2. So the lamp is located 2 units above the<br />

3.6 Derivatives of Logarithmic Functions<br />

1. The differentiation formula for logarithmic functions,<br />

3. f(x) =sin(lnx) ⇒ f 0 (x) =cos(lnx) ·<br />

5. f(x) =log 2 (1 − 3x) ⇒ f 0 (x) =<br />

d<br />

dx (log a x) = 1 ,issimplestwhena = e because ln e =1.<br />

x ln a<br />

d<br />

1 cos(ln x)<br />

ln x =cos(lnx) · =<br />

dx x x<br />

1<br />

(1 − 3x)ln2<br />

d<br />

−3<br />

(1 − 3x) =<br />

dx<br />

(1 − 3x) ln2 or 3<br />

(3x − 1) ln 2<br />

7. f(x) = 5√ ln x =(lnx) 1/5 ⇒ f 0 (x) = 1 5 (ln x)−4/5 d<br />

dx (ln x) = 1<br />

5(ln x) 4/5 · 1<br />

x = 1<br />

5x 5 (ln x) 4<br />

9. f(x) =sinx ln(5x) ⇒ f 0 (x) =sinx ·<br />

11. F (t) =ln<br />

F 0 (t) =3·<br />

1<br />

5x · d<br />

sin x · 5<br />

(5x)+ln(5x) · cos x = +cosx ln(5x) = sin x +cosx ln(5x)<br />

dx 5x<br />

x<br />

(2t +1)3<br />

(3t − 1) 4 =ln(2t +1)3 − ln(3t − 1) 4 =3ln(2t +1)− 4ln(3t − 1) ⇒<br />

1<br />

2t +1 · 2 − 4 · 1<br />

3t − 1 · 3= 6<br />

2t +1 − 12<br />

3t − 1 , or combined, −6(t +3)<br />

(2t +1)(3t − 1) .<br />

13. g(x) =ln x √ x 2 − 1 =lnx +ln(x 2 − 1) 1/2 =lnx + 1 2 ln(x2 − 1) ⇒<br />

g 0 (x) = 1 x + 1 2 ·<br />

1<br />

x 2 − 1 · 2x = 1 x + x<br />

x 2 − 1 = x2 − 1+x · x<br />

= 2x2 − 1<br />

x(x 2 − 1) x(x 2 − 1)<br />

15. f(u) =<br />

ln u<br />

1+ln(2u)<br />

⇒<br />

f 0 (u) =<br />

[1 + ln(2u)] · 1<br />

u − ln u · 1<br />

2u · 2<br />

[1 + ln(2u)] 2 =<br />

17. y =ln 2 − x − 5x 2 ⇒ y 0 =<br />

1<br />

u<br />

[1 + ln(2u) − ln u] 1+(ln2+lnu) − ln u<br />

= =<br />

[1 + ln(2u)] 2 u[1 + ln(2u)] 2<br />

1<br />

−10x − 1<br />

· (−1 − 10x) =<br />

2 − x − 5x2 2 − x − 5x or 10x +1<br />

2 5x 2 + x − 2<br />

19. y =ln(e −x + xe −x )=ln(e −x (1 + x)) = ln(e −x )+ln(1+x) =−x +ln(1+x) ⇒<br />

y 0 = −1+ 1 −1 − x +1<br />

= = − x<br />

1+x 1+x 1+x<br />

1+ln2<br />

u[1 + ln(2u)] 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!