30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 109<br />

57. Let y =cos −1 x.Thencos y = x and 0 ≤ y ≤ π ⇒ −sin y dy<br />

dx =1<br />

dy<br />

dx = − 1<br />

sin y = − 1<br />

<br />

1 − cos2 y = − 1<br />

√<br />

1 − x<br />

2 .<br />

⇒<br />

[Notethatsin y ≥ 0 for 0 ≤ y ≤ π.]<br />

59. x 2 + y 2 = r 2 is a circle with center O and ax + by =0is a line through O [assume a<br />

and b are not both zero]. x 2 + y 2 = r 2 ⇒ 2x +2yy 0 =0 ⇒ y 0 = −x/y,sothe<br />

slope of the tangent line at P 0 (x 0,y 0) is −x 0/y 0. The slope of the line OP 0 is y 0/x 0,<br />

which is the negative reciprocal of −x 0/y 0. Hence, the curves are orthogonal, and the<br />

families of curves are orthogonal trajectories of each other.<br />

61. y = cx 2 ⇒ y 0 =2cx and x 2 +2y 2 = k [assume k>0] ⇒ 2x +4yy 0 =0 ⇒<br />

2yy 0 = −x ⇒ y 0 = − x<br />

2(y) = − x<br />

2(cx 2 ) = − 1 , so the curves are orthogonal if<br />

2cx<br />

c 6= 0.Ifc =0, then the horizontal line y = cx 2 =0intersects x 2 +2y 2 = k orthogonally<br />

<br />

at ± √ <br />

k, 0 , since the ellipse x 2 +2y 2 = k has vertical tangents at those two points.<br />

63. To find the points at which the ellipse x 2 − xy + y 2 =3crosses the x-axis, let y =0and solve for x.<br />

y =0 ⇒ x 2 − x(0) + 0 2 =3 ⇔ x = ± √ 3. So the graph of the ellipse crosses the x-axis at the points ± √ 3, 0 .<br />

Using implicit differentiation to find y 0 ,weget2x − xy 0 − y +2yy 0 =0 ⇒ y 0 (2y − x) =y − 2x ⇔ y 0 = y − 2x<br />

2y − x .<br />

So y 0 at √ 3, 0 is 0 − 2 √ 3<br />

2(0) − √ 3 =2and y0 at − √ 3, 0 is 0+2√ 3<br />

2(0) + √ =2. Thus, the tangent lines at these points are parallel.<br />

3<br />

65. x 2 y 2 + xy =2 ⇒ x 2 · 2yy 0 + y 2 · 2x + x · y 0 + y · 1=0 ⇔ y 0 (2x 2 y + x) =−2xy 2 − y ⇔<br />

y 0 = − 2xy2 + y<br />

2x 2 y + x .So− 2xy2 + y<br />

2x 2 y + x = −1 ⇔ 2xy2 + y =2x 2 y + x ⇔ y(2xy +1)=x(2xy +1) ⇔<br />

y(2xy +1)− x(2xy +1)=0 ⇔ (2xy +1)(y − x) =0 ⇔ xy = − 1 2 or y = x.Butxy = − 1 2<br />

⇒<br />

x 2 y 2 + xy = 1 4 − 1 2 6=2,sowemusthavex = y. Then x2 y 2 + xy =2 ⇒ x 4 + x 2 =2 ⇔ x 4 + x 2 − 2=0 ⇔<br />

(x 2 +2)(x 2 − 1) = 0. Sox 2 = −2, which is impossible, or x 2 =1 ⇔ x = ±1. Sincex = y, the points on the curve<br />

where the tangent line has a slope of −1 are (−1, −1) and (1, 1).<br />

67. (a) If y = f −1 (x),thenf(y) =x. Differentiating implicitly with respect to x and remembering that y is a function of x,<br />

we get f 0 (y) dy dy<br />

=1,so<br />

dx dx = 1<br />

f 0 (y)<br />

⇒ f −10 (x) =<br />

1<br />

f 0 (f −1 (x)) .<br />

(b) f(4) = 5 ⇒ f −1 (5) = 4. Bypart(a), f −10 (5) =<br />

1<br />

f 0 (f −1 (5)) = 1<br />

f 0 (4) =1 <br />

2<br />

3 =<br />

3<br />

. 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!