22.04.2015 Views

2 Lecture Notes on Cauchy-Euler DEs

2 Lecture Notes on Cauchy-Euler DEs

2 Lecture Notes on Cauchy-Euler DEs

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Math 252 – <str<strong>on</strong>g>Lecture</str<strong>on</strong>g> <str<strong>on</strong>g>Notes</str<strong>on</strong>g> #2<br />

David Maslanka<br />

REDUCTION OF A CAUCHY–EULER DE TO CONSTANT COEFFICIENTS<br />

C<strong>on</strong>sider the fourth order homogeneous <strong>Cauchy</strong>–<strong>Euler</strong> DE:<br />

4<br />

3<br />

4 d y 3 d y<br />

ax +<br />

4<br />

3<br />

dx<br />

2 d y<br />

bx + cx +<br />

2<br />

dx dx<br />

2<br />

dy<br />

dx +ε y = 0.<br />

dx<br />

( 1 )<br />

We may transform ( 1 ) into a c<strong>on</strong>stant coefficient DE with the substituti<strong>on</strong>:<br />

t<br />

x = e ⇔ t = ln x for x ∈( 0 , + ∞ ) .<br />

Now we have the representati<strong>on</strong>s for the first four derivatives of y with respect to x:<br />

dy =<br />

dx<br />

dy<br />

• = ( ln x)<br />

dt<br />

dt<br />

dx<br />

dy d<br />

• =<br />

dt dx<br />

1 dy<br />

• by the Chain Rule.<br />

x dt<br />

2<br />

d y<br />

2<br />

dx<br />

2<br />

d y<br />

2<br />

dx<br />

=<br />

1 d ⎛ dy ⎞ dt<br />

• ⎜ ⎟ •<br />

x dt ⎝ dt ⎠ dx<br />

2<br />

1 d y ⎛ 1<br />

x • dt<br />

⎟ ⎞<br />

• ⎜<br />

⎝ x ⎠<br />

=<br />

2<br />

dy d ⎛ 1 ⎞<br />

+ • ⎜ ⎟ by the Product and Chain Rules<br />

dt dx ⎝ x ⎠<br />

dy<br />

+ •<br />

dt<br />

1<br />

⎛<br />

⎜ − 2<br />

⎝ x<br />

⎞<br />

⎟<br />

⎠<br />

= 1 ⎛<br />

2<br />

2 2 ⎟ ⎞<br />

⎜<br />

d y dy<br />

•<br />

−<br />

x ⎝ dt dt ⎠<br />

3<br />

d y<br />

3<br />

dx<br />

3<br />

d y<br />

3<br />

dx<br />

= 1 2<br />

d ⎛d<br />

y dy<br />

2 2 ⎟ ⎞<br />

• ⎜<br />

−<br />

x dt ⎝ dt dt ⎠<br />

dt<br />

• +<br />

dx<br />

2<br />

⎛d<br />

y<br />

⎜<br />

2<br />

⎝ dt<br />

dy⎞<br />

− ⎟ •<br />

dt<br />

⎠<br />

= 1 3 2<br />

⎛d<br />

y d y<br />

2 3 2 ⎟ ⎞<br />

• ⎜<br />

⎛1⎞<br />

− • ⎜ ⎟⎠<br />

x ⎝ dt dt ⎠ ⎝x + 2<br />

⎛ d y dy<br />

⎟ ⎞<br />

⎜<br />

− •<br />

2<br />

⎝ dt dt ⎠<br />

d<br />

dx<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

2<br />

x<br />

⎞<br />

⎟<br />

⎠<br />

⎛ − 2 ⎞ 1<br />

⎜<br />

3<br />

⎟ =<br />

⎝ x ⎠ x<br />

by the Product and Chain Rules<br />

3 2<br />

⎛ d y d y<br />

• ⎜<br />

− 3<br />

3 3 2<br />

⎝ dt dt<br />

dy⎞<br />

+ 2 ⎟<br />

dt<br />

⎠<br />

4<br />

d y<br />

4<br />

dx<br />

4<br />

d y<br />

4<br />

dx<br />

4<br />

d y<br />

4<br />

dx<br />

3<br />

2<br />

3<br />

2<br />

1 d ⎛d<br />

y d y dy⎞<br />

dt ⎛d<br />

y d y dy⎞<br />

d<br />

= • ⎜<br />

⎟<br />

− 3 + 2 •<br />

3 3<br />

2<br />

x dt<br />

+ ⎜<br />

⎟<br />

⎛ 1 ⎞<br />

⎝ dt dt dt ⎠ dx<br />

− 3 + 2 •<br />

3<br />

2<br />

⎜<br />

3<br />

⎟<br />

⎝ dt dt dt ⎠ dx ⎝ x ⎠<br />

–by the Product and Chain Rules<br />

4<br />

3<br />

2<br />

3<br />

2<br />

1 ⎛d<br />

y<br />

⎞<br />

= • ⎜<br />

⎟ •<br />

3<br />

x<br />

− d y d y ⎛ 1 ⎞ ⎛ d y d y dy⎞<br />

3 + 2<br />

4<br />

3<br />

⎜ ⎟ + ⎜<br />

⎟<br />

⎛ − 3 ⎞<br />

⎝ dt dt dt<br />

2<br />

⎠ ⎝ x ⎠<br />

− 3 + 2 •<br />

3<br />

2<br />

⎜<br />

4<br />

⎟<br />

⎝ dt dt dt ⎠ ⎝ x ⎠<br />

1<br />

=<br />

4<br />

x<br />

4<br />

3<br />

2<br />

⎛ d y d y<br />

• ⎜<br />

−<br />

⎝ dt<br />

6 4<br />

3<br />

dt<br />

2<br />

d y<br />

+ 11<br />

dt<br />

dy<br />

⎟ ⎞<br />

− 6<br />

dt ⎠<br />

dy d y<br />

Up<strong>on</strong> substituti<strong>on</strong> for , dx<br />

2<br />

dx<br />

2<br />

3<br />

d y<br />

dx<br />

,<br />

3<br />

4<br />

d y<br />

and<br />

4<br />

dx<br />

back into (1) we find that<br />

4<br />

⎛d<br />

y<br />

a ⎜<br />

4<br />

⎝ dt<br />

−<br />

3<br />

2<br />

6 2<br />

d y d y<br />

+ 11<br />

3<br />

dt dt<br />

− 6<br />

dy⎞<br />

⎟<br />

dt<br />

⎠<br />

+ b<br />

3<br />

⎛d<br />

y<br />

⎜<br />

−<br />

3<br />

⎝ dt<br />

d<br />

2<br />

dt<br />

y<br />

3<br />

2<br />

dy⎞<br />

+ 2 ⎟<br />

dt<br />

⎠<br />

2<br />

⎛d<br />

y dy⎞<br />

+ c ⎜ ⎟<br />

−<br />

2<br />

⎝ dt dt ⎠<br />

dy<br />

+ d + ε y = 0 .<br />

dt<br />

1


Regrouping terms, we have the equivalent c<strong>on</strong>stant coefficient DE in terms of the<br />

independent variable t:<br />

4<br />

d y<br />

dt<br />

a<br />

4<br />

d y<br />

+ (–6a + b)<br />

3<br />

dt<br />

3<br />

d y<br />

+ (11a – 3b + c )<br />

2<br />

dt<br />

2<br />

dy<br />

+ (–6a + 2b – c + d ) + ε y = 0<br />

dt<br />

( 2 )<br />

Now to solve for y in ( 2 ) we set y =<br />

[ a<br />

4<br />

m + (–6a + b)<br />

3<br />

m + (11a – 3b + c )<br />

mt<br />

e which yields:<br />

2<br />

m + (–6a + 2b – c + d ) m + ε y ]<br />

C<strong>on</strong>sequently, the characteristic equati<strong>on</strong> corresp<strong>on</strong>ding to ( 2 ) is:<br />

mt<br />

e = 0 .<br />

4<br />

a m + (–6a + b)<br />

3<br />

m + (11a – 3b + c )<br />

2<br />

m + (–6a + 2b – c + d ) m + ε y = 0<br />

( * )<br />

We determine several soluti<strong>on</strong>s for ( 1 ) based <strong>on</strong> the roots to ( * ).<br />

Case 1: Distinct Real Roots<br />

In case ( * ) factors as: ( m ‐ m1)<br />

( m ‐ m1)<br />

( m ‐ m1)<br />

( m ‐ m1)<br />

= 0<br />

where m i 2 R for i = 1, 2, 3, 4 then<br />

m = m<br />

1<br />

, m<br />

2<br />

, m<br />

3<br />

, m<br />

4<br />

are all distinct real roots to ( * ). So<br />

m1<br />

t m2<br />

t m3<br />

t m4<br />

t<br />

y = c1<br />

e + c2<br />

e + c3<br />

e + c4<br />

e<br />

ξ ln x ξ<br />

is the soluti<strong>on</strong> to ( 2 ). Since t = ln x and e = x we find<br />

m1<br />

m2<br />

m3<br />

m4<br />

y = c x + c x + c x + c x<br />

to be the general soluti<strong>on</strong> to ( 1 ) for ∈( 0 , + ∞ )<br />

x .<br />

Case 2: A Repeated Real Root of Multiplicity Four<br />

4<br />

In case ( * ) factors as: ( m − m 0 ) = 0<br />

then m = m<br />

0<br />

is a root of multiplicty four to ( * ). So<br />

m0<br />

t m0<br />

t 2 m0<br />

t 3 m0<br />

t<br />

y = c1<br />

e + c2<br />

t e + c3<br />

t e + c4<br />

t e<br />

is the soluti<strong>on</strong> to ( 2 ). Up<strong>on</strong> substituting t = ln x we find<br />

to be the general soluti<strong>on</strong> to ( 1 ) for ∈( 0 , + ∞ )<br />

1<br />

x .<br />

Case 3: A Repeated Pair of C<strong>on</strong>jugate Roots<br />

2<br />

2<br />

In case ( * ) factors as: ( m − ( α + i β )) ( m − ( α − i β )) = 0<br />

then m = α ± i β is a repeated pair of c<strong>on</strong>jugate roots to ( * ). So<br />

t<br />

y = e α t<br />

( c1<br />

+ c2t<br />

) cos( β t ) + e α ( c3<br />

+ c4t<br />

) sin( β t )<br />

is the soluti<strong>on</strong> to ( 2 ). Then setting t = ln x we find<br />

2<br />

m0<br />

m0<br />

2 m0<br />

3 m0<br />

y = c x + c ( ln x)<br />

x + c ( ln x)<br />

x + c ( ln x)<br />

x<br />

1<br />

2<br />

3<br />

3<br />

4<br />

4<br />

2


y =<br />

α<br />

x ( c1<br />

c2<br />

+ ln x ) cos ( β ln x ) +<br />

α<br />

x ( c3<br />

c4<br />

+ ln x ) sin ( β ln x )<br />

to be the general soluti<strong>on</strong> to ( 1 ) for x ∈( 0 , + ∞ ) .<br />

It is important to recognize that up<strong>on</strong> setting y =<br />

m<br />

x in ( 1 ) yields:<br />

[ a m ( m – 1 )( m – 2 )( m – 3 ) + b m ( m – 1 )( m – 2 ) + c m ( m – 1 ) + d m + ε ] x m = 0<br />

That is,<br />

4<br />

3<br />

2<br />

m<br />

[ a m + (–6a + b) m + (11a – 3b + c) m + (–6a + 2b – c + d ) m + ε y ] x = 0 .<br />

Thus, y = x m is a soluti<strong>on</strong> to ( 1 ) ⇔ m is a root of:<br />

a 4<br />

3<br />

2<br />

m + (–6a + b) m + (11a – 3b + c ) m + (–6a + 2b – c + d ) m + ε y = 0<br />

( 3 )<br />

Observe that ( 3 ) agrees precisely with the characteristic equati<strong>on</strong> ( * ) for ( 2 ) .<br />

o-------------o-------------o-------------o-------------o-------------o-------------o-------------o<br />

In general, the<br />

th<br />

n order C-E DE:<br />

n<br />

n -1<br />

n d y<br />

n -1 d y<br />

a n x +<br />

n n - 1 x<br />

n -1<br />

dx<br />

a + . . . +<br />

dx<br />

dy<br />

a 1 x + a 0 y = 0<br />

dx<br />

( 4 )<br />

when transformed to the c<strong>on</strong>stant coefficient DE:<br />

n<br />

n -1<br />

d y d y<br />

dy<br />

A + n A<br />

n n -1<br />

+ . . . + A<br />

n -1<br />

1 + A 0 y = 0<br />

dt dt<br />

dt<br />

by setting x = e<br />

t will possess the characteristic equati<strong>on</strong>:<br />

α n<br />

n m + n -1<br />

α n - 1 m + . . . + α 1 m + α 0 = 0<br />

if and <strong>on</strong>ly if the equati<strong>on</strong> having precisely the same coefficients for m:<br />

n<br />

[ α n m + n -1<br />

α n - 1 m + . . . + α 1 m + α 0<br />

]<br />

m<br />

x = 0<br />

is obtained directly from ( 4 ) by setting y = x m .<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!