21.04.2015 Views

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 4. IMPROVING ON EULER’S METHOD 87<br />

<strong>The</strong> midpoint method is<br />

y n = y n−1 + h n f<br />

(<br />

t n−1/2 , 1 )<br />

2 [y n + y n−1 ]<br />

(4.123)<br />

<strong>The</strong> midpoint method is second-order and A-stable.<br />

<strong>The</strong> modified Euler Method is<br />

y n = y n−1 + h n<br />

2 [f(t n−1, y n−1 ) + f(t n , y n−1 + hf(t n−1 , y n−1 ))] (4.124)<br />

Heun’s Method is<br />

y n = y n−1 + h n<br />

4<br />

[<br />

f(t n−1 , y n−1 ) + 3f<br />

(<br />

t n−1 + 2 3 h, y n−1 + 2 )]<br />

3 hf(t n−1, y n−1 )<br />

(4.125)<br />

Both Heun’s method and the modified Euler method are second order and are<br />

examples of two-step Runge-Kutta methods, which we shall discuss later. It is<br />

clearer to implement these in two “stages,” eg., for the modified Euler method,<br />

while for Heun’s method,<br />

ỹ n = y n−1 + hf(t n−1 , y n−1 ) (4.126)<br />

y n = y n−1 + h n<br />

2 [f(t n−1, y n−1 ) + f(t n , ỹ n )] (4.127)<br />

ỹ n = y n−1 + 2 3 hf(t n−1, y n−1 ) (4.128)<br />

y n = y n−1 + h [<br />

(<br />

n<br />

f(t n−1 , y n−1 ) + 3f t n−1 + 2 )]<br />

4<br />

3 h, ỹ n (4.129)<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007<br />

Math 582B, Spring 2007<br />

California State University Northridge

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!