21.04.2015 Views

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

174 CHAPTER 9. DIFFERENTIAL ALGEBRAIC EQUATIONS<br />

3. <strong>The</strong> local index of the pencil is ≥ 2<br />

<strong>The</strong> following theorem effectively says that there are three broad classes of<br />

DAE’s: implicit ODE’s (index 0 DAEs); index 1 DAEs; and index 2 DAEs.<br />

<strong>The</strong>orem 9.7. Let A(t)y ′ (t) + B(t)y(t) = f(t) be a solvable linear time-varying<br />

DAE with matrix pencil λA(t) + B(t) with index > 2 on some interval I. <strong>The</strong>n it is<br />

possible to find an analytically equivalent transformation of the DAE on some open<br />

subinterval of I with local index of 2.<br />

<strong>The</strong>orem 9.8. Let A(t)y ′ (t) + B(t)y(t) = f(t) be a linear time-varying DAE where<br />

A(t) and B(t) are real and analytic. <strong>The</strong>n the DAE is solvable if and only if it is<br />

analytically equivalent to a system in standard canonical form using a real analytic<br />

coordinate change.<br />

<strong>The</strong>orem 9.9. Let A(t)u ′ (t) + B(t)u(t) = f(t) be a solvable linear time-varying<br />

DAE. <strong>The</strong>n it is analytically equivalent to<br />

where N is nilpotent and C is a matrix.<br />

x ′ + Cy ′ = f(t) (9.76)<br />

Ny ′ + y = g(t) (9.77)<br />

9.4 Hessenberg Forms for Linear and Nonlinear DAEs<br />

Recall that a matrix A is said to be a Hessenberg Matrix if A i,j = 0 for i > j + 1,<br />

i.e., only the upper triangular, diagonal, and sub-diagonal elements are non-zero:<br />

⎛<br />

⎞<br />

a 1,1 a 1,2 a 1,3 · · · a 1,n−1 a 1,n<br />

a 2,1 a 2,2 a 2,3 a 2,n−1 a 2,n<br />

0 a3, 2 a3, 3<br />

. .<br />

.<br />

⎜<br />

0 0 .. . .. (9.78)<br />

. .<br />

⎟<br />

⎝ 0 0 0 a n−1,n−2 a n−1,n−1 a n−1,n<br />

⎠<br />

0 0 0 0 a n,n−1 a n,n<br />

Hessenberg forms arise commonly in physical problems due to the natural symmetry<br />

of the problems. Thus a great deal of current research is based on solving problems<br />

of this form.<br />

Definition 9.10. Let A(t)y ′ (t) + B(t)y(t) = f(t) be a linear time varying DAE.<br />

<strong>The</strong>n it is in Hessenberg Size n Form if it can be written in block form as<br />

⎛<br />

⎞ ⎛ ⎞<br />

I 0 · · · 0 x ′ ⎛<br />

⎞ ⎛ ⎞ ⎛ ⎞<br />

B 11 B 12 · · · B 1,n−1 B 1,n<br />

x f(t)<br />

. 0 I .. .<br />

.<br />

B 21 B 22 · · · B 2,n−1 0<br />

.<br />

⎜<br />

. .. . ..<br />

.<br />

.<br />

⎟<br />

.<br />

+<br />

0 B 32 · · · B 3,n−1 .<br />

⎝0 I 0⎠<br />

⎜ ⎟ ⎜<br />

⎝ . ⎠ ⎝<br />

.<br />

0 0 ..<br />

⎟<br />

.<br />

=<br />

.<br />

. ⎠ ⎜ ⎟ ⎜ ⎟<br />

⎝ . ⎠ ⎝ . ⎠<br />

0 · · · · · · 0 y ′ 0 · · · 0 B n,n−1 0 y g(t)<br />

(9.79)<br />

Math 582B, Spring 2007<br />

California State University Northridge<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!