21.04.2015 Views

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 6. LINEAR MULTISTEP METHODS 129<br />

Table 6.3: <strong>The</strong> first several Backward Differentiation Formulae.<br />

Method<br />

BDF1<br />

BDF2<br />

BDF3<br />

BDF4<br />

BDF5<br />

BDF6<br />

Formula for the method<br />

hf n = y n − y n−1 (Backward Euler)<br />

2hf n = 3y n − 4y n−1 + y n−2<br />

6hf n = 11y n − 18y n−1 + 9y n−2 − 2y n−3<br />

12hf n = 25y n − 48y n−1 + 36y n−2 − 16y n−3 + 3y n−4<br />

60hf n = 137y n − 300y n−1 + 300y n−2 − 200y n−3 + 75y n−4 − 12y n−5<br />

60hf n = 147y n − 360y n−1 + 450y n−2 − 400y n−3 + 225y n−4 − 72y n−5 + 10y n−6<br />

where<br />

k j = (−1) j ∫ 1<br />

−1<br />

( ) −s<br />

ds (6.113)<br />

j<br />

To obtain the Milne-Simpson method our interpolation includes f n<br />

ν∑<br />

y n = y n−2 + h k j ∇ j f n (6.114)<br />

j=0<br />

where<br />

∫ 1<br />

( )<br />

k j = (−1) j −s + 1<br />

ds (6.115)<br />

j<br />

−1<br />

Table 6.4: Coefficients k j for the Nyström Methods.<br />

j 0 1 2 3 4 5 6 7 8<br />

k j 2 0 1/3 1/3 29/90 14/45 1139/3780 41/140 32377/113400<br />

Table 6.5: Coefficients k j for the Milne-Simpson Methods.<br />

j 0 1 2 3 4 5 6 7 8<br />

k j 2 -2 1/3 0 -1/90 -1/90 -37/3780 -8/945 -119/16200<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007<br />

Math 582B, Spring 2007<br />

California State University Northridge

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!