The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro The Computable Differential Equation Lecture ... - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

126 CHAPTER 6. LINEAR MULTISTEP METHODS formula is evaluated, the limits of integration are [−1, 0] rather than [0, 1]. Hence ∫ 0 y n = y n−1 + h = y n−1 + h −1 ( f n + s∇f n + 1 ) 2 (s2 + 2)∇ 2 f ds (6.94) [ sf n + 1 2 s2 ∇f n + 1 2 = y n−1 + h [f n − 1 2 ∇f n − 1 ] 12 ∇2 f n [ = y n−1 + h = y n−1 + h ( 1 3 s3 + 1 2 s2 ) ∇ 2 f n ] 0 −1 f n − 1 2 (f n − f n−1 ) − 1 ] 12 (f n − 2f n−1 + f n−2 ( 5 12 f n + 2 3 f n−1 − 1 ) 12 f n−2 (6.95) (6.96) (6.97) (6.98) None of the Adams’s methods are A-stable except for AM1 (the Forward Euler Method) and AM2 (Trapezoidal Rule). The outer boundaries of the regions of stability are plotted for several of these methods in figure ??, which are also listed in tables 6.1 and 6.2. Table 6.1: Explicit Adams-Bashforth Methods. Method AB1 AB2 AB3 AB4 AB5 AB6 Formula for y n − y n−1 hf n−1 (Euler’s Method) h 2 (3f n−1 − f n−2 ) h 12 (23f n−1 − 16f n−2 + 5f n−3 ) h 24 (55f n−1 − 59f n−2 + 37f n−3 − 9f n−4 ) h 720 (1901f n−1 − 2774f n−2 + 2616f n−3 − 1274f n−4 + 251f n−5 ) h 1440 (4277f n−1 − 7923f n−2 + 9982f n−3 − 7298f n−4 + 2877f n−5 − 475f n−6 ) 6.5 BDF Methods An alternative multistep method use backward differentiation. In these methods, the polynomial approximation is applied to y ′ rather than f. If sh + t n = t then y ′ (t n ) = d dt ν∑ ( ) ∣ ∣∣∣∣t=tn (−1) k −s ∇ k y k n (6.99) k=0 Math 582B, Spring 2007 California State University Northridge c○2007, B.E.Shapiro Last revised: May 23, 2007

CHAPTER 6. LINEAR MULTISTEP METHODS 127 Method AM1 AM2 AM3 AM4 AM5 AM6 Table 6.2: Implicit Adams-Moulton Methods. Formula for y n − y n−1 hf n (Backward Euler’s Method) h 2 (f n + f n−1 ) (Trapezoidal Rule) h 12 (5f n + 8f n−1 − f n−2 ) h 24 (9f n + 19f n−1 − 5f n−2 + f n−3 ) h 720 (251f n + 646f n−1 − 264f n−2 + 106f n−3 − 19f n−4 ) h 1440 (475f n + 1427f n−1 − 798f n−2 + 482f n−3 − 173f n−4 + 27f n−5 ) Since s = 0 corresponds to t = t n , d dt Hence ( )∣ −s ∣∣∣t=tn = 1 k h d ds = 1 hk! ( )∣ −s ∣∣∣s=0 ⇐= (6.100) k d ds [(−s)(−s − 1)(−s − 2) · · · (−s − k + 1)] ∣ ∣∣∣s=0 (6.101) k (k − 1)! = (−1) = (−1) k 1 hk! hk y ′ (t n ) = ν∑ k=0 (6.102) 1 hk ∇k y n (6.103) Substituting this in the equation y ′ = f gives us the BDF formula or Gear’s Method is given by ν∑ 1 k ∇k y n = hf(t n , y n ) (6.104) k=0 Thus there are constants a 0 , a 1 , a 2 , . . . , a ν and b 0 , with a 0 = 1, such that ν∑ a k y ν−k = hb 0 f(t n , y n ) (6.105) k=0 The first several BDF methods using this formula are shown in Table 6.3, BDF methods are more stable than Adam’s-Moulton methods and have the advantage of being explicit like Adams-Bashforth. Unfortunately they are unstable for all values of ν ≥ 7. Example 6.4. Derive the BDF formula for ν = 2. c○2007, B.E.Shapiro Last revised: May 23, 2007 Math 582B, Spring 2007 California State University Northridge

126 CHAPTER 6. LINEAR MULTISTEP METHODS<br />

formula is evaluated, the limits of integration are [−1, 0] rather than [0, 1]. Hence<br />

∫ 0<br />

y n = y n−1 + h<br />

= y n−1 + h<br />

−1<br />

(<br />

f n + s∇f n + 1 )<br />

2 (s2 + 2)∇ 2 f ds (6.94)<br />

[<br />

sf n + 1 2 s2 ∇f n + 1 2<br />

= y n−1 + h<br />

[f n − 1 2 ∇f n − 1 ]<br />

12 ∇2 f n<br />

[<br />

= y n−1 + h<br />

= y n−1 + h<br />

( 1<br />

3 s3 + 1 2 s2 )<br />

∇ 2 f n<br />

] 0<br />

−1<br />

f n − 1 2 (f n − f n−1 ) − 1<br />

]<br />

12 (f n − 2f n−1 + f n−2<br />

( 5<br />

12 f n + 2 3 f n−1 − 1 )<br />

12 f n−2<br />

(6.95)<br />

(6.96)<br />

(6.97)<br />

(6.98)<br />

None of the Adams’s methods are A-stable except for AM1 (the Forward Euler<br />

Method) and AM2 (Trapezoidal Rule). <strong>The</strong> outer boundaries of the regions of<br />

stability are plotted for several of these methods in figure ??, which are also listed<br />

in tables 6.1 and 6.2.<br />

Table 6.1: Explicit Adams-Bashforth Methods.<br />

Method<br />

AB1<br />

AB2<br />

AB3<br />

AB4<br />

AB5<br />

AB6<br />

Formula for y n − y n−1<br />

hf n−1 (Euler’s Method)<br />

h<br />

2 (3f n−1 − f n−2 )<br />

h<br />

12 (23f n−1 − 16f n−2 + 5f n−3 )<br />

h<br />

24 (55f n−1 − 59f n−2 + 37f n−3 − 9f n−4 )<br />

h<br />

720 (1901f n−1 − 2774f n−2 + 2616f n−3 − 1274f n−4 + 251f n−5 )<br />

h<br />

1440 (4277f n−1 − 7923f n−2 + 9982f n−3 − 7298f n−4 + 2877f n−5 − 475f n−6 )<br />

6.5 BDF Methods<br />

An alternative multistep method use backward differentiation. In these methods,<br />

the polynomial approximation is applied to y ′ rather than f. If sh + t n = t then<br />

y ′ (t n ) = d dt<br />

ν∑<br />

( ) ∣ ∣∣∣∣t=tn<br />

(−1) k −s<br />

∇ k y<br />

k n (6.99)<br />

k=0<br />

Math 582B, Spring 2007<br />

California State University Northridge<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!