The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro The Computable Differential Equation Lecture ... - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

122 CHAPTER 6. LINEAR MULTISTEP METHODS that interpolates the points P (t 0 ) = f(t 0 ) (6.40) P (t 1 ) = f(t 1 ) (6.41) . P (t n−1 ) = f(t n−1 ) (6.42) P (t n ) = f(t n ) (6.43) We define the backward difference operator ∇ for an element f n of a sequence as ∇f n = f n − f n−1 (6.44) ∇ 2 f n = ∇f n − ∇f n−1 = f n − 2f n−1 + f n−2 (6.45) ∇ 3 f n = ∇ 2 f n − ∇ 2 f n−1 = f n − 3f n−1 + 3f n−2 − f n−3 (6.46) . ∇ k f n = ∇ k−1 f n − ∇ k−1 f n−1 (6.47) Letting f n = f(t n ) we have by substituting 6.43 into 6.39 that From 6.42 we get Substituting at t = t n−2 = t n − 2h gives f n = a 0 (6.48) f n−1 = f n + a 1 (t n−1 − t n ) (6.49) = f n − a 1 h (6.50) a 1 = 1 h (f n − f n−1 ) = 1 h ∇f n (6.51) f n−2 = a 0 + a 1 (t n−2 − t n ) + a 2 (t n−2 − t n )(t n−2 − t n−2 ) (6.52) = f n + 1 h (f n − f n−1 )(−2h) + a 2 (−2h)(−h) (6.53) = 2f n−1 − f n + 2h 2 a 2 (6.54) a 2 = 1 2h 2 (f n − 2f n−1 + f n−2 ) = 1 2h 2 ∇2 f n (6.55) Continuing the process we find in general that Next we define the polynomials Q k by a k = 1 k!h k ∇k f n (6.56) k−1 ∏ Q k (t) = (t − t n−j ) (6.57) j=0 Math 582B, Spring 2007 California State University Northridge c○2007, B.E.Shapiro Last revised: May 23, 2007

CHAPTER 6. LINEAR MULTISTEP METHODS 123 Using 6.56 and 6.57 in 6.39 P (t) = a 0 + a 1 Q 1 (t) + a 2 Q 2 (t) + · · · + a n Q n (t) (6.58) n∑ = a 0 + a k Q k (t) (6.59) = f n + k=1 n∑ k=1 ∇ k f n k!h k Q k(t) (6.60) Define the parameter s, −1 ≤ s ≤ 0 in the interval [t n−1 , t n ] by From equation 6.57, t = t n + sh (6.61) k−1 ∏ Q k (t) = (t n + sh − (t n − jh)) (6.62) j=0 k−1 ∏ = (j + s)h (6.63) j=0 k−1 ∏ = h k (s + j) (6.64) j=0 = h k s(s + 1)(s + 2) · · · (s + k − 1) (6.65) Recall the definition of the binomial coefficient for n, m integers, ( n n! n(n − 1)(n − 2) · · · (n − m + 1) = = m) m!(n − m)! m! we can define, for any real number t, not necessarily integer, ( t t(t − 1)(t − 2) · · · (t − m + 1) = k) k! Using this we calculate ( ) −s = k Using 6.70 in 6.60 we get −s(−s − 1)(−s − 2) · · · (−s − k + 1) k! (6.66) (6.67) (6.68) = (−1)k s(s + 1)(s + 2) · · · (s + k − 1) (6.69) k! = (−1)k k!h k Q k(t) (6.70) P (t) = f n + n∑ ( ) (−1) k −s ∇ k f k n (6.71) which is known as Newton’s Backward Difference Formula. k=1 c○2007, B.E.Shapiro Last revised: May 23, 2007 Math 582B, Spring 2007 California State University Northridge

CHAPTER 6. LINEAR MULTISTEP METHODS 123<br />

Using 6.56 and 6.57 in 6.39<br />

P (t) = a 0 + a 1 Q 1 (t) + a 2 Q 2 (t) + · · · + a n Q n (t) (6.58)<br />

n∑<br />

= a 0 + a k Q k (t) (6.59)<br />

= f n +<br />

k=1<br />

n∑<br />

k=1<br />

∇ k f n<br />

k!h k Q k(t) (6.60)<br />

Define the parameter s, −1 ≤ s ≤ 0 in the interval [t n−1 , t n ] by<br />

From equation 6.57,<br />

t = t n + sh (6.61)<br />

k−1<br />

∏<br />

Q k (t) = (t n + sh − (t n − jh)) (6.62)<br />

j=0<br />

k−1<br />

∏<br />

= (j + s)h (6.63)<br />

j=0<br />

k−1<br />

∏<br />

= h k (s + j) (6.64)<br />

j=0<br />

= h k s(s + 1)(s + 2) · · · (s + k − 1) (6.65)<br />

Recall the definition of the binomial coefficient for n, m integers,<br />

( n n! n(n − 1)(n − 2) · · · (n − m + 1)<br />

=<br />

=<br />

m)<br />

m!(n − m)! m!<br />

we can define, for any real number t, not necessarily integer,<br />

( t t(t − 1)(t − 2) · · · (t − m + 1)<br />

=<br />

k)<br />

k!<br />

Using this we calculate<br />

( ) −s<br />

=<br />

k<br />

Using 6.70 in 6.60 we get<br />

−s(−s − 1)(−s − 2) · · · (−s − k + 1)<br />

k!<br />

(6.66)<br />

(6.67)<br />

(6.68)<br />

= (−1)k s(s + 1)(s + 2) · · · (s + k − 1) (6.69)<br />

k!<br />

= (−1)k<br />

k!h k Q k(t) (6.70)<br />

P (t) = f n +<br />

n∑<br />

( )<br />

(−1) k −s<br />

∇ k f<br />

k n (6.71)<br />

which is known as Newton’s Backward Difference Formula.<br />

k=1<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007<br />

Math 582B, Spring 2007<br />

California State University Northridge

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!