21.04.2015 Views

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

The Computable Differential Equation Lecture ... - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 5. RUNGE-KUTTA METHODS 111<br />

<strong>The</strong> maximum order of any collocation method is equal to the number of stages.<br />

Gauss-Legendre numerical methods are ν-stage, order 2ν methods that are based<br />

on collocation, and hence they give the highest possible order for any ν-stage<br />

method. 3<br />

Example 5.3. Calculate the Butcher array for the ν = 1 using P 1 (t) = t − 1/2<br />

Solution. <strong>The</strong> only root is at c 1 = 1/2, hence<br />

Hence the Butcher Array is<br />

q(t) = t − 1/2 (5.191)<br />

q 1 (t) = 1 (5.192)<br />

a 11 = 1 1<br />

b 1 = 1 1<br />

∫ 1/2<br />

0<br />

∫ 1<br />

0<br />

1/2 1/2<br />

1<br />

ds = 1 2<br />

(5.193)<br />

ds = 1 (5.194)<br />

(5.195)<br />

Example 5.4. Calculate the Butcher Array for the two-stage Gauss-Legendre method<br />

with ν = 2 where P 2 (t) = t 2 − t + 1/6<br />

Solution. <strong>The</strong> roots of 6t 2 − 6t + 1 = 0 are at<br />

Hence<br />

q(t) =<br />

(<br />

c 1 , c 2 = 6 ± √ 36 − 24<br />

12<br />

t − 1 2 − √<br />

3<br />

6<br />

) (<br />

t − 1 2 + √<br />

3<br />

6<br />

= 1 2 ± √<br />

3<br />

6<br />

)<br />

(5.196)<br />

(5.197)<br />

= t 2 − t + 1 2<br />

(5.198)<br />

q 1 (t) = t − 1 √<br />

3<br />

2 + 6<br />

q 1 (c 1 ) = 1 √<br />

3<br />

2 + 6 − 1 √ √<br />

3 3<br />

2 + 6 = 3<br />

q 1 (t)<br />

q 1 (c 1 ) = √ √<br />

3<br />

3t −<br />

2 + 1 2<br />

∫<br />

√ (<br />

1/2+ 3/6<br />

√ )<br />

√3s 3<br />

a 11 =<br />

−<br />

0<br />

2 + 1 2<br />

(√<br />

3<br />

=<br />

2 s2 + 1 − √ )∣<br />

3 ∣∣∣∣<br />

1/2+ √ 3/6<br />

s<br />

2<br />

=<br />

√<br />

3<br />

2<br />

( √<br />

1 3<br />

2 + 6<br />

) 2<br />

+<br />

(<br />

0<br />

1 − √ 3<br />

2<br />

3 For a proof of this statement see [13] section 3.4.<br />

(5.199)<br />

(5.200)<br />

(5.201)<br />

ds (5.202)<br />

) ( √ )<br />

1 3<br />

2 + = 1 6 4<br />

(5.203)<br />

(5.204)<br />

c○2007, B.E.<strong>Shapiro</strong><br />

Last revised: May 23, 2007<br />

Math 582B, Spring 2007<br />

California State University Northridge

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!