21.04.2015 Views

Trigonometric Integrals - Bruce E. Shapiro

Trigonometric Integrals - Bruce E. Shapiro

Trigonometric Integrals - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Topic 7<br />

<strong>Trigonometric</strong> <strong>Integrals</strong><br />

In this section we will tackle integrals primarily of the forms<br />

∫<br />

sin m x cos n x dx (7.1)<br />

and<br />

∫<br />

sec m x tan n x dx (7.2)<br />

where m and n are integrals, as well as integrals of the form<br />

∫<br />

∫<br />

∫<br />

sin px sin qx dx, sin px cos qx dx, cos px cos qx dx (7.3)<br />

where p and q are integrals. Our primary tools will be the basic trigonometric<br />

identities<br />

cos 2 x + sin 2 x = 1 (7.4)<br />

The double angle formula for cosines is<br />

cos 2x = cos 2 x − sin 2 x (7.5)<br />

Adding equations (7.5) and (7.4) and dividing by 2 gives<br />

cos 2 x = 1 (1 + cos 2x) (7.6)<br />

2<br />

Similarly, subtracting equation (7.5) from (7.4) and dividing by 2 gives<br />

sin 2 x = 1 (1 − cos 2x) (7.7)<br />

2<br />

« 2012. Last revised: February 26, 2013 Page 21


Math 150A TOPIC 7. TRIGONOMETRIC INTEGRALS<br />

If we divide equation (7.4) by cos x we get a similar equation relating the<br />

tangent and secant of an angle:<br />

Finally, we add the double angle formula for a sine<br />

tan 2 x + 1 = sec 2 x (7.8)<br />

sin 2x = 2 sin x cos x (7.9)<br />

and the following product-angle formulas to the mix:<br />

sin x cos y = 1 [sin(x − y) + sin(x + y)] (7.10)<br />

2<br />

sin x sin y = 1 [cos(x − y) − cos(x + y)] (7.11)<br />

2<br />

cos x cos y = 1 [cos(x − y) + cos(x + y)] (7.12)<br />

2<br />

Equations (7.4) through (7.12) will be our main tools for finding substitutions<br />

that reduce integrals to manageable proportions.<br />

∫<br />

Example 7.1 sin 2 x dx This is perhaps the most basic of the integrals<br />

of this form. We can use the identity (7.7) to obtain<br />

∫<br />

sin 2 x dx = 1 ∫<br />

(1 − cos 2x) dx (7.13a)<br />

2<br />

= 1 2 x − 1 sin 2x + C (7.13b)<br />

4<br />

When there is a single odd power (e.g., cos 3 x, sin 3 x, cos 5 x, sin 5 x, . . . ), we<br />

“reserve” one factor for the derivative, and replace all the other factors with<br />

the identity (7.4), followed by a u-substitution of u = cos x or u = sin x.<br />

∫<br />

Example 7.2 cos 3 x dx<br />

∫<br />

∫<br />

cos 3 x dx = cos x · cos 2 x dx<br />

(7.14a)<br />

∫<br />

= cos x (1 − sin 2 x) dx<br />

(7.14b)<br />

∫<br />

= (1 − u 2 ) du where u = sin x (7.14c)<br />

= u − 1 3 u3 + C (7.14d)<br />

= sin x − 1 3 sin3 x + C (7.14e)<br />

Page 22 « 2012. Last revised: February 26, 2013


TOPIC 7. TRIGONOMETRIC INTEGRALS Math 150A<br />

∫<br />

Example 7.3<br />

sin 5 x dx<br />

∫<br />

∫<br />

sin 5 x dx = sin x(sin 2 x) 2 dx<br />

(7.15a)<br />

∫<br />

= sin x(1 − cos 2 x) 2 dx<br />

(7.15b)<br />

= −<br />

∫<br />

(1 − u 2 ) 2 du with u = cos x (7.15c)<br />

= −<br />

∫<br />

(1 − 2u 2 + u 4 )du (7.15d)<br />

= −u + 2 3 u3 − 1 5 u5 + C (7.15e)<br />

= − cos x + 2 3 cos3 x − 1 5 cos5 x + C (7.15f)<br />

When there are purely even powers, the substitutions (7.6) and (7.7) reduce<br />

the power of the exponent. In the following example, we have to use the<br />

substitution twice. The first time, we substitute sin 2 x = (1/2)(1−cos(2x)).<br />

The second time, we use cos 2 (2x) = (1/2)(1 + cos(4x))<br />

∫<br />

Example 7.4 sin 4 x dx<br />

∫<br />

∫<br />

sin 4 x dx =<br />

(sin 2 x) 2 dx<br />

(7.16a)<br />

∫ ( ) 2 1<br />

=<br />

2 (1 − cos 2x) dx (7.16b)<br />

= 1 ∫<br />

(1 − 2 cos(2x) + cos 2 (2x)) dx (7.16c)<br />

4<br />

= 1 4 dx − 1 ∫<br />

cos(2x) dx + 1 ∫<br />

cos 2 (2x)dx (7.16d)<br />

2<br />

4<br />

= x 4 − 1 4 sin 2x + 1 ∫<br />

(1 + cos(4x))dx (7.16e)<br />

8<br />

= x 4 − 1 4 sin 2x + x 8 + 1 sin(4x) + C<br />

32<br />

(7.16f)<br />

= 3x 8 − 1 4 sin 2x + 1 sin(4x) + C<br />

32<br />

(7.16g)<br />

When there are a combination of sines and cosines we often have to use a<br />

mix of these rules.<br />

« 2012. Last revised: February 26, 2013 Page 23


Math 150A TOPIC 7. TRIGONOMETRIC INTEGRALS<br />

∫<br />

Example 7.5<br />

sin 5 x cos 2 x dx<br />

∫<br />

∫<br />

sin 5 x cos 2 x dx = sin x(sin 2 x) 2 cos 2 x<br />

(7.17a)<br />

∫<br />

= sin x(1 − cos 2 x) 2 cos 2 x dx<br />

(7.17b)<br />

= −<br />

∫<br />

(1 − u 2 ) 2 u 2 du with u = cos x (7.17c)<br />

= −<br />

∫<br />

(u 2 − 2u 4 + u 6 ) du (7.17d)<br />

= − 1 3 u3 + 2 5 u5 − 1 7 u7 + C (7.17e)<br />

= − 1 3 cos3 x + 2 5 cos5 x − 1 7 cos7 x + C (7.17f)<br />

∫<br />

Example 7.6<br />

sin 4 x cos 2 x dx<br />

∫<br />

∫<br />

sin 4 x cos 2 x dx =<br />

⎛<br />

⎞<br />

sin 2 x<br />

{ }} {<br />

1<br />

⎜<br />

⎝2 (1 − cos(2x)) ⎟<br />

⎠<br />

2<br />

( 1<br />

2 (1 + cos(2x)) )<br />

dx (7.18a)<br />

∫ (1<br />

− cos(2x) − cos 2 (2x) + cos 3 (2x) ) dx (7.18b)<br />

= 1 8<br />

= x 8 − 1<br />

16 sin(2x) − 1 8<br />

∫<br />

cos 2 (2x) + 1 8<br />

∫<br />

cos 3 (2x) dx<br />

(7.18c)<br />

From exercise 7.1 we have<br />

∫<br />

cos 2 xdx = x 2 + 1 4 sin(2x)<br />

(7.18d)<br />

and from example 7.2<br />

∫<br />

cos 3 xdx = sin x − 1 3 sin3 x<br />

(7.18e)<br />

Page 24 « 2012. Last revised: February 26, 2013


TOPIC 7. TRIGONOMETRIC INTEGRALS Math 150A<br />

hence<br />

∫<br />

sin 4 x cos 2 x dx = x 8 − 1<br />

16 sin(2x) − 1 ( 2x<br />

8 2 + 1 )<br />

4 sin(4x)<br />

+ 1 (<br />

sin(2x) − 1 )<br />

8<br />

3 sin3 (2x)<br />

(7.18f)<br />

= 1 16 sin(2x) − 1<br />

32 sin(4x) − 1 24 sin3 (2x) + C (7.18g)<br />

∫<br />

sin m x cos n x dx<br />

1. If the exponent of the cosine is odd,<br />

(a) Save one cosine for the derivative<br />

(b) Replace all the other cosines with cos 2 x = 1 − sin 2 x<br />

(c) Make a u-substitution of the form u = sin x<br />

2. Otherwise, if the exponent of the sine is odd<br />

(a) Save one sine for the derivative<br />

(b) Replace all the other sines with sin 2 x = 1 − cos 2 x<br />

(c) Make a u-substitution of the form u = cos x<br />

3. Otherwise, if both the exponents of the sine and the cosine are even,<br />

then use the following substitutions as possible and as necessary to<br />

reduce the degree of the exponent:<br />

sin 2 x = 1 (1 − cos 2x)<br />

2<br />

cos 2 x = 1 (1 + cos 2x)<br />

2<br />

sin 2x = 2 sin x cos x<br />

The process for solving products of powers of secants and tangents is similar.<br />

The idea is to use the identity<br />

in combination with the fact that<br />

tan 2 x + 1 = sec 2 x<br />

d<br />

dx tan x = sec2 x<br />

d<br />

sec x = sec x tan x<br />

dx (7.19c)<br />

(7.19a)<br />

(7.19b)<br />

« 2012. Last revised: February 26, 2013 Page 25


Math 150A TOPIC 7. TRIGONOMETRIC INTEGRALS<br />

and an appropriate u-substitution of either u = sec x or u = tan x to<br />

solve the integral. Unfortunately, the process is complicated by the fact<br />

that, unlike in the case of sines and cosines, we do not have double-angle<br />

formulas that reduce the powers. Thus our combination of substitutions<br />

will not always work. It is helpful to recall the basic integration formulas<br />

here as well:<br />

∫<br />

∫<br />

tan x dx = ln | sec x| + C<br />

sec x dx = ln | sec x + tan x| + C<br />

(7.20a)<br />

(7.20b)<br />

∫<br />

Example 7.7<br />

tan 3 x dx<br />

∫<br />

∫<br />

tan 3 x dx =<br />

∫<br />

=<br />

∫<br />

=<br />

tan x tan 2 x dx<br />

tan x(sec 2 x − 1) dx<br />

∫<br />

tan x sec 2 x dx − tan x dx<br />

(7.21a)<br />

(7.21b)<br />

(7.21c)<br />

= 1 2 tan2 xdx − ln | sec x| + C (7.21d)<br />

where we have used u = tan x in the first integral.<br />

∫<br />

Example 7.8 tan 6 x sec 4 x dx<br />

∫<br />

∫<br />

tan 6 x sec 4 x dx =<br />

∫<br />

=<br />

∫<br />

=<br />

tan 6 x sec 2 x sec 2 x dx<br />

tan 6 x(1 + tan 2 x) sec 2 x dx<br />

∫<br />

tan 6 x sec 2 x dx + tan 8 x sec 2 x dx<br />

(7.22a)<br />

(7.22b)<br />

(7.22c)<br />

= 1 7 tan7 x + 1 9 tan9 x + C (7.22d)<br />

where we have used u = tan x in each integral.<br />

Page 26 « 2012. Last revised: February 26, 2013


TOPIC 7. TRIGONOMETRIC INTEGRALS Math 150A<br />

∫<br />

Example 7.9<br />

tan 5 x sec 7 x dx<br />

∫<br />

d(sec x)<br />

∫<br />

{ }} {<br />

tan 5 x sec 7 x dx = tan 4 x sec 6 x (sec x tan x dx)<br />

∫<br />

= tan 4 x sec 6 x d(sec x)<br />

∫<br />

= (sec 2 x − 1) 2 sec 6 x d(sec x)<br />

∫<br />

= (sec 4 x − 2 sec 2 x + 1) sec 6 x d(sec x)<br />

∫<br />

= (sec 10 x − 2 sec 8 x + sec 6 x) ( .<br />

sec x)<br />

(7.23a)<br />

(7.23b)<br />

(7.23c)<br />

(7.23d)<br />

(7.23e)<br />

= 1<br />

11 sec11 x − 2 9 sec9 x + 1 7 sec7 x + C (7.23f)<br />

Sometimes we can get somewhere by combining integration by parts with<br />

an appropriate substitution, as in the following.<br />

∫<br />

Example 7.10 sec 3 x dx We start by using integration by parts, with<br />

u = sec x =⇒ du = sec x tan x dx (7.24a)<br />

dv = sec 2 x dx =⇒ v = tan x (7.24b)<br />

With these substitutions<br />

∫<br />

∫<br />

sec 3 x dx = uv − v du<br />

∫<br />

= sec x tan x − tan x sec x tan x dx<br />

∫<br />

= sec x tan x − tan 2 x sec x dx<br />

∫<br />

= sec x tan x − (sec 2 x − 1) sec x dx<br />

∫<br />

∫<br />

= sec x tan x − sec 3 x dx + sec x dx<br />

(7.24c)<br />

(7.24d)<br />

(7.24e)<br />

(7.24f)<br />

(7.24g)<br />

Since the original integral appears on both sides of the equation, but with<br />

opposite signs, we can add.<br />

∫<br />

∫<br />

2 sec 3 x dx = sec x tan x + sec x dx<br />

(7.24h)<br />

= sec x tan x + ln | sec x + tan x| (7.24i)<br />

« 2012. Last revised: February 26, 2013 Page 27


Math 150A TOPIC 7. TRIGONOMETRIC INTEGRALS<br />

Hence<br />

∫<br />

sec 3 x dx = 1 (sec x tan x + ln | sec x + tan x|) + C<br />

2 (7.24j)<br />

Now we collect some rules for products of secants and tangents.<br />

∫<br />

tan m x sec n x dx<br />

1. If the exponent on the tangent is even<br />

(a) Save one factor of sec 2 x to use as d tan x.<br />

(b) Substitute sec 2 x = 1 + tan 2 x in the remaining secants.<br />

(c) Use a substitution u = tan x and integrate.<br />

2. Otherwise, if the exponent of the secant is odd and the exponent of<br />

the tangent is at least 1,<br />

(a) Save one factor sec x tan x to use as d sec x.<br />

(b) Substitute tan 2 x = sec 2 x − 1 for all the remaining tangents.<br />

(c) Use a substitution u = sec x and integrate.<br />

3. Otherwise, look for some other way to simplify the integral.<br />

Finally, we also consider simple products of multiple-angle formulas, which<br />

we demonstrate by example.<br />

Example 7.11<br />

∫ π/4<br />

0<br />

cos(2x) sin(12x) dx We use the trigonometric identity<br />

sin θ cos ψ = 1 [sin(θ − ψ) + sin(θ + ψ)]<br />

2 (7.25a)<br />

to obtain<br />

∫ π/4<br />

0<br />

∫ π/4<br />

cos(2x) sin(12x) dx = 1 [sin(10x) + sin(14x)] dx (7.25b)<br />

2 0<br />

= 1 [ ]∣ −1<br />

−1 ∣∣∣<br />

π/4<br />

cos(10x) +<br />

2 10 14 cos(14x) (7.25c)<br />

0<br />

= 1 [ −1<br />

2 10 cos 5π 2 − 1<br />

14 cos 7π 2 + 1<br />

10 + 1 ]<br />

14<br />

(7.25d)<br />

= 3 35<br />

(7.25e)<br />

Page 28 « 2012. Last revised: February 26, 2013


TOPIC 7. TRIGONOMETRIC INTEGRALS Math 150A<br />

Exercises<br />

∫<br />

7.1. cos 2 x dx<br />

∫<br />

7.2. cos 4 (3x) dx<br />

∫<br />

7.3. sin 3 (5x) dx<br />

∫<br />

7.4. cos 5 (x + 7) dx<br />

∫ π/2<br />

7.5. sin 2 (3x) dx<br />

0<br />

∫ π<br />

7.6. cos 4 x dx<br />

0<br />

∫<br />

7.7. sin 2 x cos 2 x dx<br />

∫<br />

7.8. sin x cos 3 x dx<br />

∫<br />

7.9. sin 4 x cos 5 x dx<br />

∫<br />

7.10. tan 2 (πx)dx<br />

7.11.<br />

7.12.<br />

7.13.<br />

7.14.<br />

7.15.<br />

7.16.<br />

7.17.<br />

7.18.<br />

7.19.<br />

7.20.<br />

∫ 1<br />

−1<br />

tan 4 (πx/4)dx<br />

∫<br />

sec x tan 2 x dx<br />

∫<br />

sec 3 x tan x dx<br />

∫ π/4<br />

sec 3 x tan 3 x dx<br />

0<br />

∫<br />

sec x tan 3 x dx<br />

∫<br />

sec 7 x tan 9 x dx<br />

∫<br />

sec 4 x tan 7 x dx<br />

∫<br />

sec 4 x tan 4 x dx<br />

∫ π/2<br />

∫<br />

0<br />

sin(3x) sin(6x) dx<br />

sin(100x) cos(101x) dx<br />

« 2012. Last revised: February 26, 2013 Page 29


Math 150A TOPIC 7. TRIGONOMETRIC INTEGRALS<br />

Page 30 « 2012. Last revised: February 26, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!