21.04.2015 Views

Integration by Parts - Bruce E. Shapiro

Integration by Parts - Bruce E. Shapiro

Integration by Parts - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Topic 6<br />

<strong>Integration</strong> <strong>by</strong> <strong>Parts</strong><br />

<strong>Integration</strong> <strong>by</strong> parts turns the product rule into a rule for integration. Recall<br />

that from the product rule we had:<br />

(uv) ′ = uv ′ + u ′ v (6.1)<br />

Rearranging and writing this in the Leibniz notation<br />

u dv<br />

dx = d(uv)<br />

dx<br />

− v du<br />

dx<br />

Multiply both sides <strong>by</strong> the differential dx gives:<br />

Cancelling the dx everywhere,<br />

(6.2)<br />

u dv d(uv)<br />

dx =<br />

dx dx<br />

dx − v du dx (6.3)<br />

dx<br />

udv = d(uv) − vdu (6.4)<br />

Integrate both sides of the equation:<br />

∫ ∫ ∫<br />

udv = d(uv) −<br />

vdu (6.5)<br />

The first term is the integral of an exact differential, so we arrive at the<br />

following result.<br />

<strong>Integration</strong> <strong>by</strong> <strong>Parts</strong> Formula<br />

∫<br />

∫<br />

udv = uv −<br />

vdu (6.6)<br />

« 2012. Last revised: February 26, 2013 Page 15


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

∫<br />

Example 6.1<br />

x sin x dx<br />

Let<br />

u = x =⇒ dv = dx (6.7a)<br />

∫<br />

dv = sin x =⇒ v = sin xdx = − cos x (6.7b)<br />

Then<br />

∫<br />

∫<br />

x sin x dx = uv − v du<br />

∫<br />

= (x)(− cos x) −<br />

(6.8a)<br />

(− cos x)dx (6.8b)<br />

= −x cos x + sin x + C (6.8c)<br />

∫<br />

An analogous formula holds for x cos x:<br />

∫<br />

x cos x dx = cos x + x sin x + C (6.9)<br />

∫<br />

Example 6.2 xe x dx<br />

Let<br />

Then<br />

u = x =⇒ du = dx (6.10a)<br />

dv = e x dx =⇒ v = e x (6.10b)<br />

∫<br />

∫<br />

xe x dx = (x)(e x ) − (e x )dx (6.11a)<br />

∫<br />

Example 6.3<br />

Let<br />

ln x dx<br />

= xe x − e x + C (6.11b)<br />

Then<br />

∫<br />

u = ln x<br />

=⇒ du = dx x<br />

(6.12a)<br />

dv = dx =⇒ v = x (6.12b)<br />

∫<br />

ln x dx = x ln x −<br />

( ) dx<br />

x = x ln x − x + C (6.13)<br />

x<br />

Page 16 « 2012. Last revised: February 26, 2013


TOPIC 6. INTEGRATION BY PARTS Math 150A<br />

When there are limits of integration we apply them at each step of the<br />

formula.<br />

Example 6.4<br />

∫ 2<br />

1<br />

x ln x dx Let<br />

u = ln x<br />

=⇒ du = dx x<br />

(6.14a)<br />

dv = xdx =⇒ v = 1 2 x2 (6.14b)<br />

Then<br />

∫ 2<br />

1<br />

( )∣ 1 ∣∣∣<br />

2<br />

x ln x dx = (ln x)<br />

x x2<br />

= 2 ln 2 − 1 2<br />

∫ 2<br />

1<br />

= ln 2 2 − 1 4 x2 ∣ ∣∣∣<br />

2<br />

1<br />

1<br />

−<br />

xdx<br />

∫ 2<br />

1<br />

( 1<br />

2 x2 ) ( dx<br />

x<br />

= ln 4 − 1 4 × 4 + 1 4 × 1 = ln 4 − 3 4<br />

)<br />

(6.15a)<br />

(6.15b)<br />

(6.15c)<br />

(6.15d)<br />

Sometimes integration <strong>by</strong> parts will return the original function to be integration,<br />

but reversed in sign, or multiplied <strong>by</strong> a constant. When this<br />

happens, one can write an algebraic equation for the result, as illustrated<br />

in the following example.<br />

∫<br />

Example 6.5 e x sin x dx Let<br />

u = e x =⇒ du = e x dx (6.16a)<br />

dv = sin x dx =⇒ v = − cos x (6.16b)<br />

Then<br />

∫<br />

uv− ∫ vdu<br />

{ }} ∫ {<br />

e x sin x dx = −e x cos x + e x cos x dx (6.17)<br />

The second integral on the right doesn’t look any better than what we<br />

started with; nevertheless, we can continue, integrating <strong>by</strong> parts a second<br />

time, with:<br />

u = e x =⇒ du = e x dx (6.18a)<br />

dv = cos x dx =⇒ v = sin x (6.18b)<br />

« 2012. Last revised: February 26, 2013 Page 17


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

Then<br />

∫<br />

uv− ∫ vdu<br />

{(<br />

∫}} ){<br />

e x sin x dx = −e x cos x + e x sin x − e x sin x dx<br />

(6.19)<br />

∫<br />

The term with e x sin x dx appears on both sides of the equation, but<br />

with different signs. We can add this to both sides of the equation and<br />

divide <strong>by</strong> two to get the following:<br />

∫<br />

e x sin x dx = 1 2 ex (sin x − cos x) (6.20)<br />

A common trick is to combine the method of “u-substitution” with the<br />

method of integration <strong>by</strong> parts, as in the following example.<br />

∫<br />

Example 6.6 cos √ x dx We first make the substitution z = √ x, so that<br />

dz =<br />

dx<br />

2 √ x . Then since dx = 2√ xdz = 2zdz, we have<br />

∫<br />

cos √ ∫<br />

x dx = 2 z cos z dz<br />

Example 6.7<br />

(6.21a)<br />

= 2 (cos z + z sin z) + C <strong>by</strong> equation 6.9 (6.21b)<br />

= 2 cos √ x + 2 √ x sin √ x + C (6.21c)<br />

∫ √ π<br />

0<br />

∫ √ π<br />

0<br />

x 3 sin(x 2 )dx First substitute z = x 2 , so that<br />

x 3 sin(x 2 )dx =<br />

= 1 2<br />

∫ π<br />

0<br />

∫ π<br />

0<br />

z 3/2 sin z<br />

z sin z dz<br />

dz<br />

2 √ z<br />

The last integral is exactly like the integral in example 6.1, so that<br />

(6.22a)<br />

(6.22b)<br />

∫ √ π<br />

x 3 sin(x 2 )dx = 1 ∣ ∣∣∣<br />

π<br />

2 (−z cos z + sin z) = π 2<br />

0<br />

0<br />

(6.22c)<br />

Page 18 « 2012. Last revised: February 26, 2013


TOPIC 6. INTEGRATION BY PARTS Math 150A<br />

Some of the formulas that we have derived using integration <strong>by</strong> parts in this<br />

section arise so frequently that it is helpful to jot them down in a separate<br />

table. (Some of these formulas are derived in the exercises.)<br />

∫<br />

1. x sin x dx = sin x − x cos x<br />

∫<br />

2. x cos x dx = cos x + x sin x<br />

∫<br />

3. xe x dx = e x (x − 1)<br />

∫<br />

4. x 2 e x dx = e x (2 − 2x + x 2 )<br />

∫<br />

5. ln x dx = x ln x − x<br />

6.<br />

7.<br />

8.<br />

9.<br />

∫<br />

∫<br />

∫<br />

∫<br />

x ln x dx = x2<br />

2<br />

(<br />

ln x − 1 )<br />

2<br />

sin −1 x dx = √ 1 − x 2 + x sin −1 x<br />

cos −1 x dx = − √ 1 − x 2 + x cos −1 x<br />

tan −1 x dx = x tan −1 x − ln √ 1 + x 2<br />

« 2012. Last revised: February 26, 2013 Page 19


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

Exercises.<br />

Use integration <strong>by</strong> parts to solve the following integrals.<br />

∫<br />

6.1. tan −1 x dx<br />

∫<br />

6.2. x tan −1 x dx<br />

∫<br />

6.3. sin −1 (3x) dx<br />

∫<br />

6.4. t 2 e t dt<br />

6.5.<br />

6.6.<br />

6.7.<br />

6.8.<br />

6.9.<br />

6.10.<br />

6.11.<br />

∫ ln x<br />

√ x<br />

dx<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

e x cos x dx<br />

x2 x dx<br />

x ln(2x) dx<br />

x 2 ln(5x) dx<br />

x 3 (x 2 + 7) 3/2 dx<br />

x 5<br />

√<br />

x3 + 5 dx<br />

Make a substitution then use integration <strong>by</strong> parts to solve the following<br />

integrals.<br />

∫<br />

6.12. (ln(3x)) 2 dx)<br />

∫<br />

6.13. ln √ x dx<br />

∫<br />

6.14. cos ln x dx<br />

∫<br />

6.15. e x sin −1 e x dx<br />

Page 20 « 2012. Last revised: February 26, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!