21.04.2015 Views

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LECTURE 11. GRADIENTS AND THE DIRECTIONAL DERIVATIVE 77<br />

Figure 11.2: Geometric interpretation of directional derivatives as the slope of a<br />

function in an arbitrary cross-section through the z-axis.<br />

Solution. We need to calculate D a f(p) = a · ∇f. But<br />

Hence<br />

∇f(x, y) = ∇(2x 2 + xy − y 2 )<br />

= i ∂<br />

∂x (2x2 + xy − y 2 ) + j ∂ ∂y (2x2 + xy − y 2 )<br />

= i(4x + y) + j(x − 2y)<br />

D a f(p) = a · ∇f = (i − j) · (i(4x + y) + j(x − 2y))<br />

= [(1)(4x + y) + (−1)(x − 2y)]<br />

= [4x + y − x + 2y] = 3(x + y)<br />

At the point p=(3,-2) D a f(p) = 3(3 − 2) = 3.<br />

Example 11.4 Find the directional derivative off(x, y, z) = x 3 y − y 2 z 2 at p =<br />

(−2, 1, 3) in the direction a = i − 2j + 2k.<br />

Solution.<br />

∇f(x, y, z) = ∇(x 3 y − y 2 z 2 )<br />

= i ∂<br />

∂x (x3 y − y 2 z 2 ) + j ∂ ∂y (x3 y − y 2 z 2 ) + k ∂ ∂z (x3 y − y 2 z 2 )<br />

and therefore<br />

= i(3x 2 y) + j(x 3 − 2yz 2 ) + k(−2y 2 z)<br />

a · ∇f = 3x y − 2x 3 + 4yz 2 − 4y z<br />

The directional derivative at p = (−2, 1, 3) is<br />

D a f(p) = 3(−2) 2 (1) − 2(−2) 3 + 4(1)(3) 2 − 4(1) 2 (3) = 52 <br />

Note: Some books use the notation<br />

∂f<br />

∂u = D uf(p)<br />

for the directional derivative. The following example justifies this odd notation.<br />

Math 250, Fall 2006 Revised December 6, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!