21.04.2015 Views

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LECTURE 24. FLUX INTEGRALS & GAUSS’ DIVERGENCE THEOREM 199<br />

the surface integral is<br />

<br />

F · dA = F(x + dx, y + dy/2, z + dz/2)dydz · (1, 0, 0)<br />

S<br />

+ F(x, y + dy/2, z + dz/2)dydz · (−1, 0, 0)<br />

+ F(x + dx/2, y + dy, z + dz/2)dxdz · (0, 1, 0)<br />

+ F(x + dx/2, y, z + dz/2)dxdz · (0, −1, 0)<br />

+ F(x + dx/2, y + dy/2, z + dz)dxdy · (0, 0, 1)<br />

+ F(x + dz/2, y + dy/2, z)dxdy · (0, 0, −1)<br />

= [M(x + dx, y + dy/2, z + dz/2) − M(x, y + dy/2, z + dz/2)]dydz<br />

+ [N(x + dx/2, y + dy, z + dz/2) − N(x + dx/2, dy, z + dz/2)]dxdz<br />

+ [P (x + dx/2, y + dy/2, z + dz) − P (x + dx/2, y + dy/2, z)]dxdy<br />

Hence<br />

1<br />

<br />

V<br />

S<br />

F · dA =<br />

1<br />

<br />

F · dA<br />

dxdydz<br />

S<br />

M(x + dx, y + dy/2, z + dz/2) − M(x, y + dy/2, z + dz/2)<br />

=<br />

dx<br />

N(x + dx/2, y + dy, z + dz/2) − N(x + dx/2, dy, z + dz/2)<br />

+<br />

dy<br />

P (x + dx/2, y + dy/2, z + dz) − P (x + dx/2, y + dy/2, z)<br />

+<br />

dz<br />

Taking the limit as V → 0,<br />

1<br />

<br />

lim F · dA = M x + N y + P z = ∇ · F <br />

V →0 V<br />

S<br />

Theorem 24.2 Gauss’ Divergence Theorem. Let F = (M, N, P ) be a vector<br />

field with M, N, and P continuously differentiable on a solid S whose boundary is<br />

∂S. Then<br />

<br />

<br />

F · n dA = ∇ · F dV (24.2)<br />

where n is an outward pointing unit normal vector.<br />

∂S<br />

Proof. Break the volume down into infinitesimal boxes of volume<br />

∆V = ∆x × ∆y × ∆z<br />

Then we can expand the volume integral as a Riemann Sum<br />

<br />

∇ · F dV =<br />

V<br />

S<br />

n∑<br />

∆V i ∇ · F i (24.3)<br />

Math 250, Fall 2006 Revised December 6, 2006.<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!