Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro Multivariate Calculus - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

188 LECTURE 22. LINE INTEGRALS 5. The line integral around a closed curve is zero, i.e., ∮ F · dr = 0 for all closed curves C. Example 22.5 Determine if is a gradient field. C F = ( x 2 − y 2 , −2xy, z ) Solution. We calculate the curl F, ⎛ ⎞ ⎛ 0 −D z D y x 2 − y 2 ⎞ ⎛ ⎞ −D z (−2xy) + D y (z) ∇F = ⎝ D z 0 −D x ⎠ ⎝ −2xy ⎠ = ⎝ D z (x 2 − y 2 ) − D x (z) ⎠ −D y D x 0 z −D y (x 2 − y 2 ) + D x (−2xy) = (0, 0, 2y − 2y) = 0 Hence the field is a gradient field. Example 22.6 Determine if F = (−y, z, x) is a gradient field. Solution. ⎛ 0 −D z D y ∇F = ⎝ D z 0 −D x −D y D x 0 = (−1, −1, 1) ≠ 0 ⎞ ⎛ ⎞ ⎛ ⎞ −y −D z (z) + D y (x) ⎠ ⎝ z ⎠ = ⎝ D z (−y) − D x (x) ⎠ x −D y (−y) + D x (z) Hence the field is not a gradient field. Example 22.7 Find the potential function f(x, y, z) for the gradient field in example 22.5. Solution. The vector field is F = (x 2 − y 2 , −2xy, z) = (M, N, P ) where M = x 2 − y 2 , N = −2xy, and P = z. Since F is a gradient field, then for some scalar function f, f x = M = x 2 − y 2 (22.36) f y = N = −2xy (22.37) f z = P = z (22.38) Integrating the first equation with respect to x, ∫ ∫ f(x, y, z) = f x dx = (x 2 − y 2 )dx = 1 3 x3 − y 2 x + h(y, z) (22.39) Revised December 6, 2006. Math 250, Fall 2006

LECTURE 22. LINE INTEGRALS 189 The function h(y, z) is the constant of integration: we integrated over x, so the constant may still depend on y or z. Differentiate with respect to y: By equation 22.37 f y = −2xy + h y (y, z) (22.40) −2xy + h y (y, z) = −2xy h y (y, z) = 0 Therefore h does not depend on y, only on z, and we can write Differentiating with respect to z, f(x, y, z) = 1 3 x3 − y 2 x + h(z) (22.41) f z = dh dz (22.42) By equation 22.38 Hence From equation 22.41 ∫ h(z) = z dh dz = f z = z (22.43) ∫ h ′ (z)dz = z zdz = 1 2 z2 + C (22.44) f(x, y, z) = 1 3 x3 − y 2 x + 1 2 z2 + C (22.45) where C is any arbitrary constant. Math 250, Fall 2006 Revised December 6, 2006.

188 LECTURE 22. LINE INTEGRALS<br />

5. The line integral around a closed curve is zero, i.e.,<br />

∮<br />

F · dr = 0<br />

for all closed curves C.<br />

Example 22.5 Determine if<br />

is a gradient field.<br />

C<br />

F = ( x 2 − y 2 , −2xy, z )<br />

Solution. We calculate the curl F,<br />

⎛<br />

⎞ ⎛<br />

0 −D z D y x 2 − y 2 ⎞ ⎛<br />

⎞<br />

−D z (−2xy) + D y (z)<br />

∇F = ⎝ D z 0 −D x<br />

⎠ ⎝ −2xy ⎠ = ⎝ D z (x 2 − y 2 ) − D x (z) ⎠<br />

−D y D x 0 z −D y (x 2 − y 2 ) + D x (−2xy)<br />

= (0, 0, 2y − 2y) = 0<br />

Hence the field is a gradient field. <br />

Example 22.6 Determine if F = (−y, z, x) is a gradient field.<br />

Solution.<br />

⎛<br />

0 −D z D y<br />

∇F = ⎝ D z 0 −D x<br />

−D y D x 0<br />

= (−1, −1, 1) ≠ 0<br />

⎞ ⎛ ⎞ ⎛<br />

⎞<br />

−y −D z (z) + D y (x)<br />

⎠ ⎝ z ⎠ = ⎝ D z (−y) − D x (x) ⎠<br />

x −D y (−y) + D x (z)<br />

Hence the field is not a gradient field. <br />

Example 22.7 Find the potential function f(x, y, z) for the gradient field in example<br />

22.5.<br />

Solution. The vector field is<br />

F = (x 2 − y 2 , −2xy, z) = (M, N, P )<br />

where M = x 2 − y 2 , N = −2xy, and P = z. Since F is a gradient field, then for<br />

some scalar function f,<br />

f x = M = x 2 − y 2 (22.36)<br />

f y = N = −2xy (22.37)<br />

f z = P = z (22.38)<br />

Integrating the first equation with respect to x,<br />

∫ ∫<br />

f(x, y, z) = f x dx = (x 2 − y 2 )dx = 1 3 x3 − y 2 x + h(y, z) (22.39)<br />

Revised December 6, 2006. Math 250, Fall 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!