Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro Multivariate Calculus - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

162 LECTURE 20. TRIPLE INTEGRALS Solution We integrate first over z, then over y, then over x, because that is the order of the “d”s inside the integral. ∫ 2 ∫ 3 ∫ 2x−y ∫ 2 ∫ 3 (∫ 2x−y ) dzdydx = dz dydx 0 −2 Example 20.2 Find 0 ∫ π/2 ∫ z ∫ y 0 0 0 = = = = = 0 −2 ∫ 2 ∫ 3 0 −2 ∫ 2 ∫ 3 0 ∫ 2 0 ∫ 2 0 ∫ 2 0 −2 ( 0 z| 2x−y 0 ) dydx (2x − y)dydx (2xy − 1 2 y2 )∣ ∣∣∣ 3 dx −2 [6x − 9/2 + 4x + 2]dx (10x − 5/2)dx = [ 5x 2 − (5/2)x ] 2 0 = 5(4) − (5/2)(2) = 15 sin(x + y + z)dxdydz Solution We integrate first over x, then over y, then over z. Since ∫ sin udu = − cos u, ∫ π/2 ∫ z ∫ y ∫ π/2 [∫ z (∫ y ) ] sin(x + y + z)dxdydz = sin(x + y + z)dx dy dz 0 0 0 = = 0 ∫ π/2 0 ∫ π/2 0 0 0 [∫ z ] (− cos(x + y + z)| y 0 ) dy dz 0 [∫ z Next we integrate over y, using the fact that ∫ cos udu = sin u ∫ π/2 ∫ z ∫ y 0 0 0 sin(x + y + z)dxdydz = = = = ∫ π/2 0 ∫ π/2 0 ∫ π/2 0 ∫ π/2 0 [∫ z 0 0 ] (− cos(2y + z) + cos(y + z)) dy dz ] (− cos(2y + z) + cos(y + z)) dy dz [− 1 2 sin(2y + z) + sin(y + z) ]∣ ∣∣∣ z [(− 1 2 sin 3z + sin 2z ) − [− 1 2 sin 3z + sin 2z − 1 2 sin z ] dz dz 0 (− 1 2 sin z + sin z )] dz Revised December 6, 2006. Math 250, Fall 2006

LECTURE 20. TRIPLE INTEGRALS 163 Finally, we an integrate over z. ∫ π/2 ∫ z ∫ y 0 0 0 sin(x + y + z)dxdydz = ∫ π/2 0 [− 1 2 sin 3z + sin 2z − 1 2 sin z ] dz [ 1 = 6 cos 3z − 1 2 cos 2z + 1 ] π/2 2 cos z 0 [ 1 = 6 cos 3π 2 − 1 2 cos π + 1 2 cos π ] 2 [ 1 − 6 cos 0 − 1 2 cos 0 + 1 ] 2 cos 0 = 1 6 (0) − 1 2 (−1) + 1 2 (0) − 1 6 = 1 2 Definition 20.1 If S ∪ R 3 is any solid object and f(x, y, z) : S ↦→ R then the volume integral of f over S I = f(x, y, z)dxdydz s Theorem 20.1 The volume of S is the volume integral of f(x, y, z) = 1 over S V = dxdydz s The volume of S is the volume integral of the function f (x,y,z)=1. Example 20.3 . Find the volume of the solid in the first octant bounded by the surfaces y 2 + 64z 2 = 4 and y = x Figure 20.1: Left: the portion of the elliptic cylinder y 2 +64z 2 = 4 in the first octant . Right: the portion bounded by y = x in the first octant. Solution. We can solve the equation of the surface for z, z = ± 1 8√ 4 − y 2 Math 250, Fall 2006 Revised December 6, 2006.

162 LECTURE 20. TRIPLE INTEGRALS<br />

Solution We integrate first over z, then over y, then over x, because that is the order<br />

of the “d”s inside the integral.<br />

∫ 2 ∫ 3 ∫ 2x−y<br />

∫ 2 ∫ 3<br />

(∫ 2x−y<br />

)<br />

dzdydx =<br />

dz dydx<br />

0<br />

−2<br />

Example 20.2 Find<br />

0<br />

∫ π/2 ∫ z ∫ y<br />

0<br />

0<br />

0<br />

=<br />

=<br />

=<br />

=<br />

=<br />

0 −2<br />

∫ 2 ∫ 3<br />

0 −2<br />

∫ 2 ∫ 3<br />

0<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

−2<br />

(<br />

0<br />

z| 2x−y<br />

0<br />

)<br />

dydx<br />

(2x − y)dydx<br />

(2xy − 1 2 y2 )∣ ∣∣∣<br />

3<br />

dx<br />

−2<br />

[6x − 9/2 + 4x + 2]dx<br />

(10x − 5/2)dx<br />

= [ 5x 2 − (5/2)x ] 2<br />

0<br />

= 5(4) − (5/2)(2) = 15 <br />

sin(x + y + z)dxdydz<br />

Solution We integrate first over x, then over y, then over z. Since ∫ sin udu =<br />

− cos u,<br />

∫ π/2 ∫ z ∫ y<br />

∫ π/2<br />

[∫ z<br />

(∫ y<br />

) ]<br />

sin(x + y + z)dxdydz =<br />

sin(x + y + z)dx dy dz<br />

0<br />

0<br />

0<br />

=<br />

=<br />

0<br />

∫ π/2<br />

0<br />

∫ π/2<br />

0<br />

0<br />

0<br />

[∫ z<br />

]<br />

(− cos(x + y + z)| y 0 ) dy dz<br />

0<br />

[∫ z<br />

Next we integrate over y, using the fact that ∫ cos udu = sin u<br />

∫ π/2 ∫ z ∫ y<br />

0<br />

0<br />

0<br />

sin(x + y + z)dxdydz =<br />

=<br />

=<br />

=<br />

∫ π/2<br />

0<br />

∫ π/2<br />

0<br />

∫ π/2<br />

0<br />

∫ π/2<br />

0<br />

[∫ z<br />

0<br />

0<br />

]<br />

(− cos(2y + z) + cos(y + z)) dy dz<br />

]<br />

(− cos(2y + z) + cos(y + z)) dy dz<br />

[− 1 2 sin(2y + z) + sin(y + z) ]∣ ∣∣∣<br />

z<br />

[(− 1 2 sin 3z + sin 2z )<br />

−<br />

[− 1 2 sin 3z + sin 2z − 1 2 sin z ]<br />

dz<br />

dz<br />

0<br />

(− 1 2 sin z + sin z )]<br />

dz<br />

Revised December 6, 2006. Math 250, Fall 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!