Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro Multivariate Calculus - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

158 LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS Solution. The domain is the set {(x, y) : 0 ≤ y ≤ 3, 0 ≤ x ≤ √ 9 − y 2 } Therefore the area is A = ∫ 3 0 ∫ √ 9−y 2 0 √ 1 + f 2 x + f 2 y dxdy Differentiating f(x, y) = (9 − y 2 ) 1/2 gives f x = 0 and f y = (1/2)(9 − y 2 ) −1/2 (−2y) = −y(9 − y 2 ) −1/2 and therefore A = = = = = = 3 ∫ 3 0 ∫ 3 0 ∫ 3 0 ∫ 3 0 ∫ 3 ∫ √ 9−y 2 0 ∫ √ 9−y 2 0 √ 1 + f 2 x + f 2 y dxdy √ 1 + [−y(9 − y 2 ) −1/2 ] 2 dxdy ∫ √ 9−y 2 √ 1 + y 2 (9 − y 2 ) −1 dxdy 0 ∫ √ √ 9−y 2 0 0 0 ∫ 3 0 ∫ √ 9−y 2 ∫ √ 9−y 2 0 1 + y2 9 − y 2 dxdy √ 9 9 − y 2 dxdy 1 √ 9 − y 2 dxdy Since the integrand is only a function of y, we can move it from the inner integral to the outer integral: ∫ 3 ∫ √ 9−y 1 2 A = 3 √ dxdy 9 − y 2 0 = 3 = 3 0 ∫ 3 0 ∫ 3 0 1 √ 9 − y 2 √ 9 − y 2 dy dy = 9 Example 19.3 Find a formula for the surface area of a sphere of radius a. Solution. The equation of a sphere of radius a centered at the origin is x 2 + y 2 + z 2 = a 2 Revised December 6, 2006. Math 250, Fall 2006

LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS 159 Solving for z z = ± √ a 2 − x 2 − y 2 The total area is the sum of the area of the top half and the area of the bottom half of the plane; the equation of the sphere in the top half of the plane is f(x, y) = √ a 2 − x 2 − y 2 Differentiating f x = −x √ a 2 − x 2 − y 2 and f y = −y √ a 2 − x 2 − y 2 The area of the top half of the sphere is then A = = = = √ 1 + fx 2 + fy 2 dxdy C √ 1 + c c c = a x 2 a 2 − x 2 − y 2 + y 2 a 2 − x 2 − y 2 dxdy √ a 2 − x 2 − y 2 a 2 − x 2 − y 2 + x 2 √ c a 2 a 2 − x 2 − y 2 dxdy 1 √ a 2 − x 2 − y 2 dxdy a 2 − x 2 − y 2 + y 2 a 2 − x 2 − y 2 dxdy where C is the circle of radius a in the xy-plane. In polar coordinates, then ∫ 2π ∫ a 1 A = a √ 0 0 a 2 − r rdrdθ 2 Letting u = a 2 − r 2 we have du = −2rdr; when r = 0, u = a 2 and when r = a, u = 0.Thus the area of the top half of the sphere is A = a = − a 2 = − a 2 = −a ∫ 2π ∫ 0 1 0 a ∫ 2 2π ∫ 0 0 ∫ 2π 0 ∫ 2π 0 √u (−du/2)dθ u −1/2 dudθ a 2 u 1/2 0 dθ 1/2 ∣ a 2 [0 − (a 2 ) 1/2 ]dθ ∫ 2π = a 2 dθ = 2πa 2 Therefore the area of the sphere is 2A = 4πa 2 0 Math 250, Fall 2006 Revised December 6, 2006.

LECTURE 19. SURFACE AREA WITH DOUBLE INTEGRALS 159<br />

Solving for z<br />

z = ± √ a 2 − x 2 − y 2<br />

The total area is the sum of the area of the top half and the area of the bottom half<br />

of the plane; the equation of the sphere in the top half of the plane is<br />

f(x, y) = √ a 2 − x 2 − y 2<br />

Differentiating<br />

f x =<br />

−x<br />

√<br />

a 2 − x 2 − y 2 and f y =<br />

−y<br />

√<br />

a 2 − x 2 − y 2<br />

The area of the top half of the sphere is then<br />

A =<br />

=<br />

=<br />

=<br />

√<br />

1 + fx 2 + fy 2 dxdy<br />

C<br />

√<br />

<br />

1 +<br />

<br />

<br />

c<br />

c<br />

c<br />

<br />

= a<br />

x 2<br />

a 2 − x 2 − y 2 + y 2<br />

a 2 − x 2 − y 2 dxdy<br />

√<br />

a 2 − x 2 − y 2<br />

a 2 − x 2 − y 2 + x 2<br />

√<br />

c<br />

a 2<br />

a 2 − x 2 − y 2 dxdy<br />

1<br />

√<br />

a 2 − x 2 − y 2 dxdy<br />

a 2 − x 2 − y 2 + y 2<br />

a 2 − x 2 − y 2 dxdy<br />

where C is the circle of radius a in the xy-plane. In polar coordinates, then<br />

∫ 2π ∫ a<br />

1<br />

A = a √<br />

0 0 a 2 − r rdrdθ 2<br />

Letting u = a 2 − r 2 we have du = −2rdr; when r = 0, u = a 2 and when r = a,<br />

u = 0.Thus the area of the top half of the sphere is<br />

A = a<br />

= − a 2<br />

= − a 2<br />

= −a<br />

∫ 2π ∫ 0<br />

1<br />

0 a<br />

∫ 2 2π ∫ 0<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

√u (−du/2)dθ<br />

u −1/2 dudθ<br />

a 2 u 1/2<br />

0<br />

dθ<br />

1/2 ∣<br />

a 2<br />

[0 − (a 2 ) 1/2 ]dθ<br />

∫ 2π<br />

= a 2 dθ = 2πa 2<br />

Therefore the area of the sphere is 2A = 4πa 2<br />

0<br />

Math 250, Fall 2006 Revised December 6, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!