Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro Multivariate Calculus - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

152 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES We can solve this final integral by making the substitution u = 4 − r 2 , hence du = −2rdr. When r = 0, u = 4 and when r = 2, u = 0. Therefore S √ 4 − x 2 − y 2 dA = − π 2 = − π 4 ∫ 0 4 ∫ 0 4 u 1/2 (du/2) u 1/2 du = − π ∣ 2 ∣∣∣ 0 4 3 u3/2 = π 6 (4 3/2) = 4π 3 4 Example 18.7 Find the value of ∫ ∞ −∞ e −x2 dx Solution. There is no possible substitution that will allow us to find a closed form solution to the indefinite integral ∫ e −x2 dx However, by using polar coordinates we can find the definite integral ∫ ∞ −∞ e−x2 dx, as follows. First, we define the quantity I = ∫ ∞ −∞ e −x2 dx which is the definite integral we are trying to find. Then I 2 = = = = (∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ ∫ ∞ ) (∫ ∞ e −x2 dx e −x2 dx −∞ −∞ ∫ ∞ ∫ ∞ −∞ −∞ ∫ ∞ −∞ e −x2 dx −∞ e −y2 dy e −x2 e −y2 dxdy e −(x2 +y 2) dxdy This is an integral over the entire xy plane; in polar coordinates this is the set S = {(r, θ) : 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π} Revised December 6, 2006. Math 250, Fall 2006 )

LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES 153 Transforming the integral to polar coordinates and using the fact that r 2 = x 2 + y 2 gives I 2 = = = ∫ ∞ ∫ 2π 0 ∫ ∞ 0 ∫ ∞ = 2π 0 e −r2 r 0 ∫ ∞ e −r2 rdθdr ∫ 2π 0 e −r2 r(2π)dr 0 e −r2 rdr dθdr At this point we can make the substitution u = −r 2 . r = 0, then u = 0 and when r = ∞, u = −∞ Then du = −2rdr, when I 2 = 2π = − 2π ∫ ∞ 0 ∫ −∞ 0 e −r2 rdr e u du = −2πe u | −∞ 0 = −2π(e −∞ − e 0 ) = −2π(0 − 1) = 2π Therefore ∫ ∞ −∞ e −x2 dx = I = √ I 2 = √ 2π Math 250, Fall 2006 Revised December 6, 2006.

152 LECTURE 18. DOUBLE INTEGRALS IN POLAR COORDINATES<br />

We can solve this final integral by making the substitution u = 4 − r 2 , hence du =<br />

−2rdr. When r = 0, u = 4 and when r = 2, u = 0. Therefore<br />

<br />

S<br />

√<br />

4 − x 2 − y 2 dA = − π 2<br />

= − π 4<br />

∫ 0<br />

4<br />

∫ 0<br />

4<br />

u 1/2 (du/2)<br />

u 1/2 du<br />

= − π ∣<br />

2 ∣∣∣<br />

0<br />

4 3 u3/2<br />

= π 6<br />

(4 3/2)<br />

= 4π 3 <br />

4<br />

Example 18.7 Find the value of<br />

∫ ∞<br />

−∞<br />

e −x2 dx<br />

Solution. There is no possible substitution that will allow us to find a closed form<br />

solution to the indefinite integral<br />

∫<br />

e −x2 dx<br />

However, by using polar coordinates we can find the definite integral ∫ ∞<br />

−∞ e−x2 dx,<br />

as follows. First, we define the quantity<br />

I =<br />

∫ ∞<br />

−∞<br />

e −x2 dx<br />

which is the definite integral we are trying to find. Then<br />

I 2 =<br />

=<br />

=<br />

=<br />

(∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞ ∫ ∞<br />

) (∫ ∞<br />

e −x2 dx<br />

e −x2 dx<br />

−∞ −∞<br />

∫ ∞ ∫ ∞<br />

−∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

e −x2 dx<br />

−∞<br />

e −y2 dy<br />

e −x2 e −y2 dxdy<br />

e −(x2 +y 2) dxdy<br />

This is an integral over the entire xy plane; in polar coordinates this is the set<br />

S = {(r, θ) : 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π}<br />

Revised December 6, 2006. Math 250, Fall 2006<br />

)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!