21.04.2015 Views

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LECTURE 17. DOUBLE INTEGRALS OVER GENERAL REGIONS 139<br />

Example 17.4 Find the iterated integral<br />

and sketch the set S.<br />

∫ 1 ∫ y 2<br />

0 0<br />

2ye x dxdy<br />

Solution We write the integral as<br />

∫ 1 ∫ y 2<br />

0<br />

0<br />

2ye x dxdy =<br />

=<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ y 2<br />

2y e x dxdy =<br />

0<br />

2y[e y2 − e 0 ]dy =<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

2y<br />

} {e x | y2<br />

0 dy<br />

2ye y2 dy −<br />

The first integral on the right can be solve with the substitution<br />

u = y 2 , du = 2dy<br />

∫ 1<br />

0<br />

2ydy<br />

when y = 0, u = 0, and when y = 1, u = 1. Thus y=0, u=0; when y=1, u=1. Thus<br />

∫ 1<br />

0<br />

2ye y2 dy =<br />

∫ 1<br />

The second integral is straightforward:<br />

0<br />

e u du = e u | 1 0 = e1 − e 0 = e − 1<br />

Therefore<br />

∫ 1<br />

0<br />

2ydy = y 2∣ ∣ 1 0 = 1 − 0 = 1<br />

Figure 17.6: The region in example 4.<br />

∫ 1 ∫ y 2<br />

0<br />

0<br />

2ye x dxdy =<br />

∫ 1<br />

0<br />

2ye y2 dy −<br />

∫ 1<br />

= (e − 1) − 1 = e − 2<br />

0<br />

2ydy<br />

We can draw the domain by observing that the outer integral – the one over y –<br />

increase from zero to 1. For any fixed y within this region, x increases for 0 to y 2 .<br />

As we move up along the y axis (the outer integral) we need to increase from x = 0<br />

to x = y 2 , i.e., the curve of y = √ x. <br />

Math 250, Fall 2006 Revised December 6, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!