Multivariate Calculus - Bruce E. Shapiro

Multivariate Calculus - Bruce E. Shapiro Multivariate Calculus - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

132 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES Whenever we calculate a definite integral, the final answer will always be a number and will not have any variables left in it. Example 16.4 Find ∫ 2 ∫ 2 0 0 (x 2 + y 2 )dxdy Solution. ∫ 2 ∫ 2 0 0 (x 2 + y 2 )dxdy = = = = ∫ 2 0 ∫ 2 0 ∫ 2 0 (∫ 2 x 2 dx + 0 [ 1 ∫ 2 ∣ ∣∣∣ 2 ∫ 2 3 x3 + y 2 dx 0 0 [ ] 8 3 + 2y2 dy ( 8 3 y + 2 3 y3 )∣ ∣∣∣ 2 = 8 3 (2) + 2 32 (8) = 3 3 0 0 ) y 2 dx dy ] dy Volumes and Areas The Area A of a rectangle R in the xy plane is A = dxdy R The Volume V between the surface z = f(x, y) and the rectangle R in the xy plane is V = f(x, y)dxdy R These formulas for area and volume still hold even if R is not a rectangle (even though we have not yet defined the concept of an integral over a non-rectanglular domain). Example 16.5 Find the area of the rectangle [0, l] × [0, w]. Solution. Using double integrals, ∫ w A = R dxdy = 0 ∫ l 0 dxdy = lw Example 16.6 Find the volume of the solid under the plane z = 2x + 4y and over the rectangle [3, 12] × [2, 4]. Revised December 6, 2006. Math 250, Fall 2006

LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES 133 Solution. The volume is given by the iterated integral ∫ 12 ∫ 4 3 Example 16.7 Find 2 (2x + 4y)dydx = ∫ 1 ∫ 2 0 0 = = = = 4 ∫ 12 ∫ 4 3 ∫ 12 3 ∫ 12 3 ∫ 12 2 ∫ 4 2x 3 ∫ 12 3 2xdydx + 2 dydx + 2x(4 − 2)dx + 4xdx + ∫ 12 xdx + 24 3 ∫ 12 ∫ 12 ∫ 4 3 ∫ 12 3 ∫ 12 3 2 ∫ 4 4 2 4(8 − 2)dx 3 dx 4ydydx ydydx 4[(y 2 /2) ∣ ∣ 4 2 dx = 4 (x 2 /2) ∣ 12 + 24(12 − 3) 3 = 4(72 − 9/2) + 216 = 288 − 18 + 216 = 486 y 1 + x 2 dydx Solution. Since the inner integral is over y, the denominator, which depends only on x, can be brought out of the inner integral: ∫ 1 ∫ 2 0 0 ∫ y 1 1 + x 2 dydx = Example 16.8 Find the iterated integral = = 2 0 ∫ 1 0 ∫ 1 0 ∫ 1 2 1 + x 2 ydydx 0 1 1 + x 2 (y2 /2) ∣ 2 0 dx 1 1 + x 2 dx = 2 tan −1 x ∣ ∣ 1 0 = 2(tan −1 1 − tan −1 0) = 2(π/4 − 0) = π/2 ∫ 5 ∫ 3 2 1 x (x 2 + y) 2 dxdy Solution. There is nothing that can be factored out of the inner integral. We will first consider just the inside integral, ∫ 3 1 x (x 2 + y) 2 dx where y is a constant. If we make the substitution u = x 2 + y Math 250, Fall 2006 Revised December 6, 2006.

132 LECTURE 16. DOUBLE INTEGRALS OVER RECTANGLES<br />

Whenever we calculate a definite integral, the final answer will always be a number<br />

and will not have any variables left in it. <br />

Example 16.4 Find<br />

∫ 2 ∫ 2<br />

0<br />

0<br />

(x 2 + y 2 )dxdy<br />

Solution.<br />

∫ 2 ∫ 2<br />

0<br />

0<br />

(x 2 + y 2 )dxdy =<br />

=<br />

=<br />

=<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

(∫ 2<br />

x 2 dx +<br />

0<br />

[<br />

1<br />

∫ 2<br />

∣ ∣∣∣<br />

2 ∫ 2<br />

3 x3 + y 2 dx<br />

0 0<br />

[ ] 8<br />

3 + 2y2 dy<br />

( 8<br />

3 y + 2 3 y3 )∣ ∣∣∣<br />

2<br />

= 8 3 (2) + 2 32<br />

(8) =<br />

3 3 <br />

0<br />

0<br />

)<br />

y 2 dx dy<br />

]<br />

dy<br />

Volumes and Areas<br />

The Area A of a rectangle R in the xy plane is<br />

<br />

A = dxdy<br />

R<br />

The Volume V between the surface z = f(x, y) and the rectangle R in the xy plane<br />

is<br />

<br />

V = f(x, y)dxdy<br />

R<br />

These formulas for area and volume still hold even if R is not a rectangle (even<br />

though we have not yet defined the concept of an integral over a non-rectanglular<br />

domain).<br />

Example 16.5 Find the area of the rectangle [0, l] × [0, w].<br />

Solution. Using double integrals,<br />

∫ w<br />

A =<br />

R dxdy =<br />

0<br />

∫ l<br />

0<br />

dxdy = lw <br />

Example 16.6 Find the volume of the solid under the plane z = 2x + 4y and over<br />

the rectangle [3, 12] × [2, 4].<br />

Revised December 6, 2006. Math 250, Fall 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!