Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro Lecture Notes in Differential Equations - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

88 LESSON 10. INTEGRATING FACTORS This depends on both t and y; case 1 requires that P (1) (t, y) only depend on t. Hence case 1 fails. Next we try case 2 P (2) (t, y) = N t(t, y) − M y (t, y) M(t, y) = 1 y (10.116) Since P (2) is purely a function of y, the conditions for case (2) are satisfied. Hence an integrating factor is (∫ ) µ(y) = exp (1/y)dy = exp (ln y) = y (10.117) Multiplying equation the differential equation through µ(y) = y gives This has y 2 dt + (2ty − y 2 e y )dy = 0 (10.118) M(t, y) = y 2 (10.119) N(t, y) = 2ty − y 2 e y (10.120) Since M y = 2y = N t , equation (10.118) is exact. Thus we know that the solution is φ(t, y) = C where ∂φ ∂t =M(t, y) = y2 (10.121) ∂φ ∂y =N(t, y) = 2ty − y2 e y (10.122) Integrating (10.121) over t, ∫ ∫ ∂φ φ(t, y) = ∂t dt + h(y) = y 2 dt + h(y) = y 2 t + h(y) (10.123) Differentiating with respect to y, ∂φ ∂y = 2ty + h′ (y) (10.124) Equating the right hand sides of (10.124) and (10.122), 2yt + h ′ (y) = 2ty − y 2 e y (10.125) h ′ (y) = −y 2 e y ∫ (10.126) h(y) = h ′ (y)dy (10.127) = − ∫ y 2 e y dy (10.128) = −e y (2 − 2y + y 2 ) (10.129)

89 Substituting (10.129) into (10.123) gives φ(t, y) = y 2 t − e y (2 − 2y + y 2 ) (10.130) The general solution of the ODE is y 2 t + e y (−2 + 2y − y 2 ) = C (10.131) The initial condition y(0) = 1 gives C = (1 2 )(0) + e 1 (−2 + (2)(1) − 1 2 ) = −e (10.132) Hence the solution of the initial value problem is y 2 t + e y (−2 + 2y − y 2 ) = −e (10.133)

88 LESSON 10. INTEGRATING FACTORS<br />

This depends on both t and y; case 1 requires that P (1) (t, y) only depend<br />

on t. Hence case 1 fails. Next we try case 2<br />

P (2) (t, y) = N t(t, y) − M y (t, y)<br />

M(t, y)<br />

= 1 y<br />

(10.116)<br />

S<strong>in</strong>ce P (2) is purely a function of y, the conditions for case (2) are satisfied.<br />

Hence an <strong>in</strong>tegrat<strong>in</strong>g factor is<br />

(∫ )<br />

µ(y) = exp (1/y)dy = exp (ln y) = y (10.117)<br />

Multiply<strong>in</strong>g equation the differential equation through µ(y) = y gives<br />

This has<br />

y 2 dt + (2ty − y 2 e y )dy = 0 (10.118)<br />

M(t, y) = y 2 (10.119)<br />

N(t, y) = 2ty − y 2 e y (10.120)<br />

S<strong>in</strong>ce M y = 2y = N t , equation (10.118) is exact. Thus we know that the<br />

solution is φ(t, y) = C where<br />

∂φ<br />

∂t =M(t, y) = y2 (10.121)<br />

∂φ<br />

∂y =N(t, y) = 2ty − y2 e y (10.122)<br />

Integrat<strong>in</strong>g (10.121) over t,<br />

∫ ∫<br />

∂φ<br />

φ(t, y) =<br />

∂t dt + h(y) = y 2 dt + h(y) = y 2 t + h(y) (10.123)<br />

Differentiat<strong>in</strong>g with respect to y,<br />

∂φ<br />

∂y = 2ty + h′ (y) (10.124)<br />

Equat<strong>in</strong>g the right hand sides of (10.124) and (10.122),<br />

2yt + h ′ (y) = 2ty − y 2 e y (10.125)<br />

h ′ (y) = −y 2 e y<br />

∫<br />

(10.126)<br />

h(y) = h ′ (y)dy (10.127)<br />

= −<br />

∫<br />

y 2 e y dy (10.128)<br />

= −e y (2 − 2y + y 2 ) (10.129)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!