21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

366 LESSON 33. NUMERICAL METHODS<br />

Figure 33.4: Result of the forward Euler method to solve y ′ = −100(y −<br />

s<strong>in</strong> t), y(0) = 1 with h = 0.001 (top), h = 0.019 (middle), and h = 0.02<br />

(third). The bottom figure shows the same equation solved with the backward<br />

Euler method for step sizes of h = 0.001, 0.02, 0.1, 0.3, left to right<br />

curves, respectively<br />

.<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

0 0.5 1 1.5 2 2.5 3<br />

0.5<br />

0<br />

0.5<br />

1<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.5<br />

1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 0.5 1 1.5 2 2.5 3<br />

0 0.5 1 1.5 2 2.5 3<br />

0 0.5 1 1.5 2 2.5 3<br />

Improv<strong>in</strong>g Euler’s Method<br />

All numerical methods for <strong>in</strong>itial value problems of the form<br />

variations of the form<br />

y ′ (t) = f(t, y), y(t 0 ) = y 0 (33.40)<br />

y n+1 = y n + φ(t n , y n , . . . ) (33.41)<br />

for some function φ. In Euler’s method, φ = hf(t n , y n ); <strong>in</strong> the Backward’s<br />

Euler method, φ = hf(t n+1 , y n+1 ). In general we can get a more accurate

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!