21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

327<br />

Non-constant Coefficients<br />

We can solve the general l<strong>in</strong>ear system<br />

y ′ = A(t)y(t) + g(t) (31.197)<br />

where the restriction that A be constant has been removed, <strong>in</strong> the same<br />

manner that we solved it <strong>in</strong> the scalar case. We expect<br />

[ ∫ ]<br />

M(t) = exp − A(t)dt<br />

(31.198)<br />

to be an <strong>in</strong>tegrat<strong>in</strong>g factor of (31.197); <strong>in</strong> fact, s<strong>in</strong>ce<br />

M ′ (t) = −M(t)A(t) (31.199)<br />

we can determ<strong>in</strong>e<br />

d<br />

dt (M(t)y) = M(t)y′ + M ′ (t)y (31.200)<br />

= M(t)y ′ − M(t)A(t)y (31.201)<br />

= M(t)(y ′ − A(t)y(t)) (31.202)<br />

= M(t)g(t) (31.203)<br />

Hence<br />

∫<br />

M(t)y =<br />

M(t)g(t)dt + C (31.204)<br />

and therefore the solution of (31.197) is<br />

[∫<br />

]<br />

y = M −1 (t) M(t)g(t)dt + C<br />

for any arbitrary constant vector C.<br />

Example 31.6. Solve y ′ = A(t)y + g(t), y(0) = y 0 , where<br />

( ) ( ) ( )<br />

0 −t<br />

t 4<br />

A =<br />

, g(t) = , y<br />

−t 0<br />

3t 0 =<br />

2<br />

(31.205)<br />

(31.206)<br />

To f<strong>in</strong>d the <strong>in</strong>tegrat<strong>in</strong>g factor M = exp ∫ −A(t)dt, we first calculate<br />

∫<br />

P(t) = − A(t)dt = 1 ( ) 0 t<br />

2<br />

2 t 2 (31.207)<br />

0<br />

The eigenvalues of P are<br />

λ 1 = − t2 2 , λ 2 = t2 2<br />

(31.208)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!