21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

323<br />

where (A − λI)w 2 = w 1 , i.e.,<br />

Lett<strong>in</strong>g w 2 =<br />

{( 3 3<br />

0 3<br />

) ( 1 0<br />

− 3<br />

0 1<br />

(<br />

c<br />

d)<br />

, this simplifies to<br />

)} ( 1<br />

w 2 =<br />

0<br />

)<br />

(31.159)<br />

( 0 3<br />

0 0<br />

) ( c<br />

d<br />

) ( 1<br />

=<br />

0<br />

)<br />

(31.160)<br />

which gives d = 1/3 and leaves c ( undeterm<strong>in</strong>ed ) (namely, any value will do,<br />

0<br />

so we choose zero). Hence w 2 = :<br />

1/3<br />

(<br />

y 2 = e<br />

[t<br />

3t 1<br />

0<br />

The general solution is then<br />

) ( 0<br />

+<br />

1/3<br />

)]<br />

= e 3t ( t<br />

1/3<br />

)<br />

(31.161)<br />

y = c 1 y 1 + c 2 y 2 (31.162)<br />

( ) ( )<br />

1<br />

= c 1 e 3t t<br />

+ c<br />

0<br />

2 e 3t (31.163)<br />

1/3<br />

where c 1 and c 2 are arbitrary constants. qed<br />

Variation of Parameters for Systems<br />

Theorem 31.14. A particular solution of<br />

y ′ = Ay + g(t) (31.164)<br />

is<br />

y P = e At ∫<br />

e −At g(t)dt (31.165)<br />

Proof. Let W be a fundamental matrix of the homogeneous equation<br />

y ′ = Ay, and denote a fundamental set of solutions by y 1 , ..., y n . We will<br />

look for a particular solution of the form<br />

y P =<br />

n∑<br />

y i (t)u i (t) = Wu (31.166)<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!