Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro Lecture Notes in Differential Equations - Bruce E. Shapiro

bruce.shapiro.com
from bruce.shapiro.com More from this publisher
21.04.2015 Views

314 LESSON 31. LINEAR SYSTEMS Let y 1 , ..., y n denote the column vectors of W. Then by (31.93) Equating columns, ( y ′ 1 · · · y ′ n) = W ′ (31.94) = AW (31.95) = A ( ) y 1 · · · y n (31.96) = ( ) Ay 1 · · · Ay n (31.97) y ′ i = Ay i , i = 1, . . . , n (31.98) hence each column of W is a solution of the differential equation. Furthermore, by property (3) of of the Matrix Exponential, W = e At is invertible. Since a matrix is invertible if and only if all of its column vectors are linearly independent, this means that the columns of W form a linearly independent set of solutions to the differential equation. To prove that they are a fundamental set of solutions, suppose that y(t) is a solution of the initial value problem with y(t 0 ) = y 0 . We must show that it is a linear combination of the columns of W. Since the matrix W is invertible, the numbers C 1 , C 2 , ..., C n , which are the components of the vector exist. But C = [W(t 0 )] −1 y 0 (31.99) Ψ = WC (31.100) ⎛ ⎞ = ( C 1 ) ⎜ y 1 · · · y n ⎝ ⎟ . ⎠ (31.101) C n = C 1 y 1 + · · · + C n y n (31.102) is a solution of the differential equation, and by (31.99), Ψ(t 0 ) = W (t 0 )C = y 0 , so that Ψ(t) also satisfies the initial value problem. By the uniqueness theorem, y and Ψ(t) must be identical. Hence every solution of y ′ = Ay is a linear combination of the column vectors of W, because any solution can be considered a solution of some initial value problem. Thus the column vectors form a fundamental set of solutions, and hence W is a fundamental matrix.

315 Theorem 31.8. (Abel’s Formula.) The Wronskian of y ′ = Ay, where A is a constant matrix, is W (t) = W (t 0 )e (t−t0)trace(A) (31.103) If A is a function of t, then ∫ t W (t) = W (t 0 ) exp [trace(A(s))]ds t 0 (31.104) Proof. Let W be a fundamental matrix of y ′ = Ay. Then by the formula for differentiation of a determinant, ∣ ∣ y 11 ′ y 21 ′ · · · y n1 ′ ∣∣∣∣∣∣∣∣ y 11 y 21 · · · y n1∣∣∣∣∣∣∣∣ W ′ y 12 y 22 y n2 y 12 ′ y 22 ′ y n2 ′ (t) = . + . .. . . .. ∣y 13 y 2n y nn ∣y 13 y 2n y nn y 11 y 21 · · · y n1 y 12 y 22 + · · · + . . .. ∣y 13 ′ y 2n ′ y nn ′ ∣ (31.105) But since W satisfies the differential equation, W ′ = AW, so that ⎛ ⎞ a 11 · · · a 1n W ′ ⎜ ⎟ = AW = ⎝ . . ⎠ ( ) y 1 · · · y n (31.106) a n1 · · · a nn ⎛ ⎞ a 1 · y 1 · · · a 1 · y n ⎜ ⎟ = ⎝ . . ⎠ (31.107) a n · y 1 · · · a n · y n where a i is the ith row vector of A, and the a i · y j represents the vector dot product between the i th row of A and the jth solution vector y j .

315<br />

Theorem 31.8. (Abel’s Formula.) The Wronskian of y ′ = Ay, where A<br />

is a constant matrix, is<br />

W (t) = W (t 0 )e (t−t0)trace(A) (31.103)<br />

If A is a function of t, then<br />

∫ t<br />

W (t) = W (t 0 ) exp [trace(A(s))]ds<br />

t 0<br />

(31.104)<br />

Proof. Let W be a fundamental matrix of y ′ = Ay. Then by the formula<br />

for differentiation of a determ<strong>in</strong>ant,<br />

∣ ∣ y 11 ′ y 21 ′ · · · y n1<br />

′ ∣∣∣∣∣∣∣∣ y 11 y 21 · · · y n1∣∣∣∣∣∣∣∣<br />

W ′ y 12 y 22 y n2<br />

y 12 ′ y 22 ′ y n2<br />

′<br />

(t) =<br />

. +<br />

. ..<br />

. . ..<br />

∣y 13 y 2n y nn<br />

∣y 13 y 2n y nn y 11 y 21 · · · y n1<br />

y 12 y 22<br />

+ · · · +<br />

. . ..<br />

∣y 13 ′ y 2n ′ y nn<br />

′ ∣<br />

(31.105)<br />

But s<strong>in</strong>ce W satisfies the differential equation, W ′ = AW, so that<br />

⎛<br />

⎞<br />

a 11 · · · a 1n<br />

W ′ ⎜<br />

⎟<br />

= AW = ⎝ . . ⎠ ( )<br />

y 1 · · · y n (31.106)<br />

a n1 · · · a nn<br />

⎛<br />

⎞<br />

a 1 · y 1 · · · a 1 · y n<br />

⎜<br />

⎟<br />

= ⎝ .<br />

. ⎠ (31.107)<br />

a n · y 1 · · · a n · y n<br />

where a i is the ith row vector of A, and the a i · y j represents the vector<br />

dot product between the i th row of A and the jth solution vector y j .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!