21.04.2015 Views

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

Lecture Notes in Differential Equations - Bruce E. Shapiro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

311<br />

The Jordan Form<br />

Let A be a square n × n matrix.<br />

A is diagonalizable if for some matrix U, U −1 AU = D is diagonal.<br />

A is diagonalizable if and only if it has n l<strong>in</strong>early <strong>in</strong>dependent eigenvectors<br />

v 1 , ..., v n , <strong>in</strong> which case U = ( v 1 · · · v n<br />

)<br />

will diagonalize A.<br />

If λ 1 , ..., λ k are the eigenvalues of A with multiplicities m 1 , ..., m k (hence<br />

n = m 1 + · · · + m k ) then the Jordan Canonical Form of A is<br />

⎛<br />

⎞<br />

B 1 0 · · · 0<br />

J =<br />

0 B 2 .<br />

⎜<br />

⎝<br />

. ⎟<br />

. .. 0 ⎠<br />

0 · · · 0 B k<br />

(31.73)<br />

where (a) if m i = 1, B i = λ i (a scalar or 1 × 1 matrix; and (b) if m i ≠ 1,<br />

B i is an m i ×m i submatrix with λ i repeated <strong>in</strong> every diagonal element, the<br />

number 1 <strong>in</strong> the supra-diagonal, and zeroes everywhere else, e.g., if m i = 3<br />

then<br />

⎛<br />

λ i 1 0<br />

⎞<br />

0 0 λ i<br />

B i = ⎝ 0 λ i 1 ⎠ (31.74)<br />

The B i are called Jordan Blocks.<br />

For every square matrix A, there exists a matrix U such J = U −1 AU<br />

exists.<br />

If J is the Jordan form of a matrix, then<br />

Thus e A = Ue J U −1 .<br />

⎛<br />

⎞<br />

e B1 0 0<br />

e J ⎜<br />

= ⎝<br />

.<br />

0 ..<br />

⎟<br />

0 ⎠ (31.75)<br />

0 0 e B k<br />

Example 31.3. Evaluate the solution<br />

y = e A(t−t0) y 0 =<br />

{ [( 1 1<br />

exp<br />

4 −2<br />

) ]} ( 6<br />

t<br />

5<br />

)<br />

(31.76)<br />

found <strong>in</strong> the previous example.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!